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PREFACE

Two contrasting approaches to problems in geophysics have been pur-
sued. The first approach has been to use solutions of the classical equa-
tions of continuum mechanics. Examples of this approach include Laplace’s
equation for gravity and static geomagnetic problems, the wave equation
for seismology and electromagnetic wave propagation, and the heat equa-
tion for the thermal structure of the earth. The second approach has been
the use of stochastic variability or noise. In this volume of Ad�ances in
Geophysics, we explore in detail one of the main components of noise, that
of long-range persistence or memory. The first chapter in this volume is a
broad summary of theory and techniques of long-range persistence in time
series; the second chapter is the application of long-range persistence to a
variety of geophysical time series.

Time series can be found in many areas of geophysics. Examples of time
series in which one variable changes with time at a given location on the
earth include temperature, the geomagnetic field, and sedimentation rates.
Some spatial data sets, such as the Earth’s topography along a linear track,
can also be considered the equivalent of a time series. The main attributes
of a time series include the statistical distribution of values in the signal

Ž .and the correlations the memory or persistence between values. For the
first attribute, the standard approach in the literature is to assume that a
time series has a Gaussian statistical distribution of values. In many cases,
this assumption is appropriate and provides the correct statistical distribu-
tions. In other cases, it is appropriate to choose a log-normal distribution
of values. We consider both in our discussion of theory and techniques in
the first chapter.

The other main attribute of a time series is persistence. If each value in
a time series is chosen randomly from a Gaussian distribution, the series is
a Gaussian white noise. All values in a white noise are independent of
other values; there are no correlations and the persistence is zero. The
running sum of a Gaussian white noise results in a Brownian motion.
Brownian motions have been studied for more than a hundred years. In

Ž .Brownian motions, correlations the persistence play an essential role.
A Brownian motion is a nonstationary time series where the mean of the

ix
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signal increases as the length of the time series increases. The persistence
is positive: each value in the time series has a positive correlation with the
other values. In a Brownian motion, if one value is larger than the average
of the entire time series, the next value will also have a strong likelihood of
being larger than the mean. Brownian motions have many applications,
including topography and the diffusion of species in a gas.

A Brownian motion is an example of a time series that exhibits long-range
persistence; each value in the time series has a correlation with all other
values. The pioneering work of Mandelbrot and co-workers recognized
that there is an entire class of fractional noises and motions, all with the
property of long-range persistence, that bridge the gap between Gaussian
white noises and Brownian motions. There are also empirical techniques
for studying short-range correlations between neighboring values. This
approach generally limits in an arbitrary way the number of preceding
values that influence the next value. Examples of short-range persistence

Ž . Ž .techniques include the autoregressive AR model, moving average MA
model, and the combined ARMA model.

In studying long-range persistence, there are fundamental problems of
analysis and a wide range of applications. In the first chapter of this
volume, we provide a comprehensive introduction and framework for the
theory of long-range persistence in time series, followed by a discussion
and comparison of four techniques: semivariograms, rescaled-range,
Fourier spectral analysis, and wavelet variance analysis. Wavelet variance
analysis is particularly useful for nonstationary time series, such as Brown-
ian motions. The theory of each technique is discussed at a level under-
standable to advanced undergraduate students, graduate students, and
researchers. Strengths and weaknesses of each technique are then com-

Žpared by applying each to a broad range of synthetic time series fractional
.noises and motions .

In the second chapter of this volume, we apply techniques of long-range
persistence to climate variability, the Earth’s magnetic field, and sediment
deposition. Each application is an in-depth and innovative way of examin-
ing these parameters. The treatment of climate variability includes the first
comprehensive examination of the stochastic component of temperature
and provides fundamental new insights into how the global ocean�atmo-
sphere system operates. The variability of climate is quantified in terms of
fractional noises and motions. Numerical studies of climate should be able
to reproduce this variability. The treatment of the Earth’s magnetic field
provides new insights into the behavior of the Earth’s geodynamo. We
follow these three detailed applications with a summary of long-range
persistence applications by other scientists. Both chapters in this volume
include extensive bibliographies.
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SELF-AFFINE TIME SERIES:
I. GENERATION AND ANALYSES

BRUCE D. MALAMUD AND DONALD L. TURCOTTE

Department of Geological Sciences
Cornell Uni�ersity

Ithaca, New York 14853-1504

1. INTRODUCTION

1.1. Brief Overview of Article

Ž .Mandelbrot 1967 introduced the concept of fractals in terms of statisti-
cal self-similarity or scale invariance, the idea that the shape of an object
does not define its size. The original example was the length of a rocky
coastline; a map of a rocky coastline gives no indication of its scale.
Subsequently, many natural phenomena have been shown to exhibit statis-
tical self-similarity. Examples include earthquakes, fragments, river net-

Ž .works, and mineral deposits Turcotte, 1997 . For real applications, scale
invariance is valid only over a limited range; for example, in terms of
fragments, there will always be a largest fragment and a smallest fragment.

Ž .Mandelbrot and Van Ness 1968 extended the concept of statistical
self-similarity to time series. This was done within the context of the
self-affine time series. A two-dimensional object is self-affine if it is
statistically self-similar when the two axes are scaled differently. The
classic example of a self-affine time series is a Brownian motion. In this
article, we consider, in detail, methods of generating synthetic self-affine
time series and methods for their analysis. Our basic definition of a
self-affine time series is that the power-spectral density of the time series
has a power-law dependence on frequency. The concepts of persistence
and stationarity are examined in detail.

Examples of time series in geophysics include global temperature, the
strength of the Earth’s magnetic field, and the flow in a river. After
obvious periodicities and trends in a time series have been removed, the
remaining values are the stochastic component. The stochastic component
of a time series has two main aspects, its statistical distribution of values

Ž .and its persistence. Typical statistical distributions are Gaussian normal
and log-normal. The persistence measures the correlations between adja-
cent values within the time series. The persistence of values with respect to

Ž .each other can be strong, weak, or nonexistent white noise . A strong
correlation implies a ‘‘memory’’ of previous values in the time series.

1
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BRUCE D. MALAMUD AND DONALD L. TURCOTTE2

Values of a time series can affect other values in the time series that are
Ž . Ž .not only nearby in time short-range but also far away in time long-range .

Since self-affine time series have a power-law dependence of the power-
spectral density function on frequency, they exhibit long-range persistence.

There are many statistical approaches currently in use for the purpose
of quantifying geophysical data sets. The purpose of this paper is to
systematically compare many of these statistical approaches and to illus-
trate their robustness and utility through applications to synthetic data sets
whose properties are known. To achieve this purpose, we generate self-
affine synthetic fractional noises and motions with a wide range of persis-
tence strengths and two different statistical distributions, Gaussian and
log-normal. These synthetic noises and motions have similar properties to
many time series found in geophysics and other fields. The persistence
analyses we use to quantify these time series are semivariogram analysis,
rescaled-range analysis, average extreme-value analysis, Fourier power-
spectral analysis, and wavelet variance analysis. The last two techniques
measure the strength of persistence over a broad range of self-affine time
series, whereas the others measure the strength only over specific subsets.
We discuss the theory behind each technique and its use in measuring the
strength of persistence for self-affine time series.

1.2. What Is a Time Series?

A time series is the set of numerical values of any variable that changes
with time. A time series is generally either continuous or discrete. A

Ž .continuous time series y t is a set of values that are continuous in time
over the interval T. Examples include the continuous record of the
atmospheric temperature at a specified point in space and the discharge
down a river measured at a gauging station. A discrete time series consists
of a set of values that are not continuous. The values in a discrete time
series, y , are often specified at equal increments of time, � . Values of yn n

are then given at times t � n� , n � 1, 2, 3, . . . , N with interval T � N� .n
Although the time between successive n is a constant � , the values of yn

Ž .may occur arbitrarily during each � interval e.g., floods , they may occur
Ž .at exactly every � interval e.g., hourly temperature readings , or they can

Žbe the integral of the continuous time series taken over each � e.g., a
.yearly time series of lake sediment accumulation . Note that in this article,

we connect individual points in a discrete time series by straight lines; this
can give the false impression of continuous observation, but aids the eye in
following the time series.
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Time series are generally sets of values given as a function of time, t;
Ž .for instance, current as a function of time can be represented as I t .

However, time series are also good representations of other kinds of data
Ž .sets. For example, topographic elevations along linear transects, h x , are

essentially equivalent to continuous time series. Here, the topographic
elevation, h, is a function of the horizontal coordinate, x. Another exam-
ple is the concentration of a mineral as a function of depth in a drill core.
The actual concentrations are continuous, with possibly a few exceptions,
but from practical considerations, measurements of concentrations are
carried out at discrete intervals, giving a discrete time series. Well logs are
an example of a time series in a geological context; digitized measurements
of density, porosity, and�or permeability at prescribed depth intervals
represent discrete time series. Three examples of geophysical time series
are given in Fig. 1.

Although time series are defined to be sets of values as a function of a
Ž .single variable, i.e., y t , time series can be extended to functions of more

Ž .variables. An example is topography, h x, y , where the elevation h is a
function of two horizontal coordinates, x and y. In this article, we will only
examine time series that are functions of one variable and can be plotted

Ž .in two dimensions two coordinates .
A time series may be characterized by any combination of the following:

a trend component, one or more periodic components, and a stochastic
component. The trend component is a long-term increase or decrease in
the series; for example, trends in stream-flow series often result from
gradual human-induced changes to the land. Many time series have
periodic components; for example, an atmospheric temperature time series
will have strong daily and yearly periodicities. The stochastic component is
the fluctuations not included in either the trend or periodic components.

1.3. How Is a Time Series Quantified?

In order to quantify the stochastic component of a time series it is
Ž . Ž .necessary to specify: 1 the statistical distribution of values, and 2 the

Ž .persistence or antipersistence .
The values of the variable in a natural time series may take on any

statistical distribution of values. The most commonly used distributions
Žmay be divided into four families: the normal family normal, log-normal,

. Ž . Žlog-normal type 3 , the general extreme-value GEV family GEV, Gum-
. Žbel, log-Gumbel, Weibull , the Pearson type 3 family Pearson type 3, log-

.Pearson type 3 , and the generalized Pareto distribution. Stedinger et al.
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Ž .FIG. 1. Three examples of time series. a The number of worldwide earthquakes with
25 Žseismic moments M � 10 N � m in successive 30-day intervals, 1977�1995 Harvard Cen-0

. Ž . Žtroid�Moment Tensor Database, 1997 . b Average daily river discharges Slack and
.Landwehr, 1992 for the hydrologic gauging station at Salt River near Roosevelt, AZ, Oct. 1,

2 Ž .1913 to Sept. 30, 1988, drainage area 11,200 km . c Elevation h as a function of position x.
Ž . ŽEarth’s topography from 70W, 55S southern tip of South America to 70W, 10S intersection

. Ž . Ž . Ž .of Bolivia, Peru, and Brazil . Both a and b are examples of discrete time series and c is
Ž .an example of a continuous time series. In a , the values are independent of one another;

Ž . Ž .this is an example of an uncorrelated time series. In both b and c , the values in each time
series are positively correlated with one another; these are examples of persistent time series.
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Ž .1993 provide an excellent discussion and review of these different distri-
butions.

In many cases, the distribution of values is well approximated by a
Ž .Gaussian normal distribution. For example, the discrete time series of

the number of worldwide earthquakes occurring during successive 30-day
Ž .periods Fig. 1a is closely approximated by a Gaussian distribution. In

other cases, the distribution may be strongly skewed with only positive
values possible and it is appropriate to consider log-normal distributions.
An example is the discrete time series of daily river discharges illustrated
in Fig. 1b. Hydrologic time-series studies have been considered in detail by

Ž . Ž .Bras and Rodriguez-Iturbe 1993 and Salas 1993 .
In addition to the statistical distribution of values, it is also necessary to

specify whether a time series is persistent, uncorrelated, or antipersistent.
The stochastic component of a time series is persistent if adjacent values
are positively correlated; i.e., adjacent values are on average closer to each
other than for an uncorrelated time series. It is antipersistent if adjacent
values are anticorrelated; i.e., adjacent values are on average further apart

Ž .than for an uncorrelated time series. Beran 1992, 1994 and Bassing-
Ž .thwaighte et al. 1994 give good overviews of statistical methods for

treating data with persistence, and consider a variety of applications.
Persistence is also known as the ‘‘memory’’ or internal correlation of a
process.

An example of a persistent time series is the discrete time series of
average daily river discharges given in Fig. 1b. Adjacent values of the
average daily river discharges are positively correlated with one another. If
a value for an average daily discharge is greater than the mean of the
average daily discharges, then the next successive average daily discharge
will have a high probability of also being greater; big values have a
tendency to follow other big values, and small ones tend to follow small.
An example of a continuous time series is the topography profile given in
Fig. 1c. Topography as a time series has been considered in detail by

Ž .Malinverno 1995 . Topography clearly has horizontal persistence; adjacent
values of topography are correlated. If adjacent values in the time series
are independent of one another, then the stochastic component is uncorre-
lated. For example, the number of worldwide earthquakes occurring during

Ž .successive 30-day periods Fig. 1a is a sequence of independent measure-
ments and the values in the time series are uncorrelated.

Persistence can be either weak or strong, short-range or long-range. The
terms weak and strong are taken here to mean how strongly time-series

Ž .values that are separated by a given number of points the lag are
correlated with one another. Short-range vs long-range persistence speci-
fies whether there is persistence for only short lags, or also for much
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longer lags. For instance, if values have a strong correlation with one
another, but only for short lags, this is strong persistence over a short
range. Topography is an example of a process that exhibits strong persis-
tence over a long range.

There is a large literature on models containing short-range persistence;
Ž . Ž .examples include autoregressive AR processes, moving average MA

Ž . Žprocesses, and combinations of the two ARMA e.g., Salas, 1993; Box
.et al., 1994 . A number of fields, for example hydrology, use models based

on short-range persistence. In this article, we examine time-series models
that exhibit long-range persistence. We create synthetic self-affine time
series with long-range persistence and systematic variations in the strengths
of persistence, similar to many time series found in geophysics and other
fields. We examine a variety of techniques that quantify the strengths of
persistence in self-affine time series, and discuss the relative merits of each
technique.

1.4. Autocorrelations and Semivariograms

Ž .In many cases the persistence or antipersistence of a time series can be
quantified by using the autocorrelation function. Many books and papers
discuss this function. A very readable and comprehensive review of the
use of the autocorrelation function for time-series analysis is given by

Ž .Box et al. 1994 .
Ž .The autocorrelation function, r s , at lag s, measures the correlation of

Ž . Ž .a time series with itself, y t � s compared with y t , at increasing values
of s. This is given by

Ž .c s
Ž . Ž .r s � , 1Ž .c 0

Ž .with the autocovariance function, c s , given by

1 T�sŽ . � Ž . � � Ž . � Ž .c s � y t � s � y y t � y dt 2HŽ .T � s 0

Ž .and the autocovariance function at 0 lag, c 0 , given by

1 T 2Ž . � Ž . � Ž .c 0 � y t � y dt � V . 3HT 0

Ž .The time series, y t , is prescribed over the interval 0 	 t 	 T. The
Ž .average and variance of y t over the interval T are y and V. The

Ž .autocorrelation function, r s , is dimensionless and does not depend on
Ž . Ž . Ž .the units of y t or t. With s � 0 we have c s � c 0 � V, the variance of
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Ž .the time series over the period T , resulting in r s � 1. The time series
Ž .when compared with itself 0 lag has a correlation of 1, the most positive

Ž . Ž .that r s can be. With increasing lag, s, the values of r s become smaller
Ž . Ž .as the statistical correlations of y t � s with y t decrease. The plot of

Ž .r s versus s is known as a correlogram. Although the autocorrelation, Eq.
Ž .1 , at a particular lag, s, can give insight into the data, one is generally
more interested in the overall structure of the autocorrelation function

Ž .taken over a range of lags. Large values of r s indicate a strong correla-
tion between those points in the time series that are separated by lag s,

Ž . Ž .small values of r s indicate weak correlation, and values of r s � 0
Ž .indicate no correlation white noise . Persistence here can be defined as a

Ž . Ž .sequence of r s that have positive values. If the values of r s are large,
Ž .but then quickly drop to r s � 0, we have an example of strong persis-

Ž . Ž .tence over a short range of values. If the values of r s are small nonzero
and continue to stay small for very large lags, then the persistence is weak
and long-range.

For a discrete time series, the autocorrelation function, r , is given byk

ck Ž .r � , 4k c0

with the autocovariance, c , given byk

N�k1
Ž .Ž . Ž .c � y � y y � y 5Ýk n�k nŽ .N � k n�1

Ž .and the autocovariance at 0 lag the variance given by

N1 2Ž . Ž .c � y � y � V . 6Ý0 nN n�1

Increasing values of k correspond to increasing lag. The variance, V, is
taken over the N values of y . For an uncorrelated stochastic time seriesn
Ž .white noise , the values of r will be near zero. Positive values of rk k
indicate persistence while negative values indicate antipersistence. The
power spectrum of a time series is the Fourier transform of the autocorre-
lation function. The power spectrum, a measure of long-range persistence
and antipersistence, is used frequently in the analysis of geophysical time
series and will be discussed in detail in Sections 2 and 3.

Ž . Ž .Note that in Eqs. 2 and 5 , some authors use T and N instead of
Ž . Ž .T � s and N � k ; there is little difference for values of k less than
about N�4. For a discussion of the two different quantities, see Jenkins

Ž . Ž .and Watts 1968 and Section 6.2 in Percival and Walden 1993 . We use
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Ž . Ž .T � s and N � k to maintain the same nomenclature that is used with
the definition of semivariograms introduced later in this section.

One important aspect of time series is the question of stationarity.
Broadly speaking, a time series is said to be stationary if there are no

Ž .systematic changes in the mean i.e., no trend , no systematic changes in
Ž .variance, and if periodic components have been removed Chatfield, 1996 .

For this article, we use the concept of weak stationarity, where the mean
and the variance must be independent of the length of the interval
considered. In weak stationarity, higher moments are not considered. If
the mean or the variance vary with the length of the interval considered,
then the time series is nonstationary.

It is inappropriate to use correlograms for nonstationary time series,
because the autocorrelation function, r, has the mean, y, in its definition.
An alternative way to measure long-range correlations, which is valid for
both stationary and nonstationary time series, is the semivariogram � . Like
the autocorrelation function, the semivariogram measures the dependence
of values in a time series that are separated by a lag, s. The variogram was
developed by a French professor of mining and engineering, Matheron
Ž .1962, 1963a, b , for the analysis of ore reserves and their distribution. The
variogram is a quantification of the mean-square successive differences
within a time series taken at increasing lag, s; i.e., how much the values on
average vary from one another, hence the term ‘‘variogram.’’ Note that the

Ž .variogram is not a measure of the variance second moment , V, of a time
series, but rather the variance of increments within the time series.

Ž .Geostatisticians e.g., Journel and Huijbregts, 1978 generally use half of
the variogram, called the semivariogram. There are many examples of the
use of the semivariogram in geology and geophysics; for example, Oliver

Ž .and Webster 1986 have applied semivariograms to landforms and soil
Ž .properties, and Hewett 1986 , along with a review of many other fractal

techniques, uses semivariograms for the analysis of fluid transport.
Ž .For a continuous time series, the semivariogram, � s , is given by

1 T�s 2Ž . � Ž . Ž .� Ž .� s � y t � s � y t dt. 7HŽ .2 T � s 0

Note that neither the mean, y, nor the variance, V, is used in this
definition. For a discrete time series we have

N�k1 2Ž . Ž .� � y � y . 8Ýk n�k nŽ .2 N � k n�1

Increasing values of s or k correspond to increasing lag. The plot of � vs ss
or � vs k is known as a semivariogram. For a stationary time series, thek
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semivariogram, � , and the autocorrelation function, r , are related. Thek k
mean of the time series, y, can be added and subtracted within the

Ž .summation in Eq. 8 to give

N�k1 2�Ž . Ž .� Ž .� � y � y � y � y . 9Ýk n�k nŽ .2 N � k n�1

When expanded this gives

N�k N�k1 2 2Ž . Ž .� � y � y � y � yÝ Ýk n�k nŽ .2 N � k n�1 n�1 Ž .10
N�k

Ž .Ž .� 2 y � y y � y .Ý n�k n
n�1

Ž .Provided the time series is stationary, two of the terms in Eq. 10 are
Ž .equivalent to the variance in Eq. 6 , giving

N�k1
Ž .Ž . Ž .� � V � y � y y � y . 11Ýk n�k nŽ .N � k n�1

Ž . Ž .Substituting the definition for c from Eq. 5 into Eq. 11 and using thek
Ž . Ž .definitions of c from Eq. 6 and r from Eq. 4 , we find0 k

ckŽ . Ž . Ž .� � V � c � V � V � V 1 � r . 12k k kž /c0

For an uncorrelated time series we have r � 0 and � � V. In Section 3.4,k k
we use semivariograms to quantify some nonstationary time series that
exhibit long-range persistence; the quantification will give us a measure of
the strength of the persistence.

Both the autocorrelation function and semivariograms have been ap-
plied by a number of authors to synthetic time series that exhibit long-
range persistence, similar to the synthetic time series used in this paper.

Ž .Schepers et al. 1992 applied the autocorrelation function to synthetic
Ž .stationary time series. Gallant et al. 1994 applied the semivariogram to

Ž .both stationary and nonstationary synthetic time series. Beran 1992, 1994
has an extensive discussion of the relationship between the autocorrelation
function and long-range persistence; in addition, he gives extensive refer-
ences to applications.
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1.5. Self-Affine Fractals

Before continuing our discussion of time series, we introduce the con-
cept of the self-affine fractal and the Hausdorff exponent. Extensive work

Žhas been done in this area over the last two decades Mandelbrot, 1982,
1985, 1986; Feder, 1988; Meakin, 1988; Korvin, 1992; Hastings and Sugi-

.hara, 1993; Schmittbuhl et al., 1995; Turcotte, 1997 .
The concept of fractals finds its origins in the concept of scale invari-

ance. In the geological sciences, there are many examples of scale invari-
ance. For example, a photograph of a geological outcrop requires a scale,
such as a person or a rock hammer, in order for the viewer to have an idea
of how big or how small the folds, layers of rocks, and other structures are

Ž .in the outcrop. Mandelbrot 1967 introduced the concept of fractals by
examining the length of the coastline of Britain with different-sized mea-

Ž .suring rods, and found a power-law dependence scale invariance of the
total length of the coastline on the length of the measuring rod. In
addition, a distribution of objects is fractal if the frequency�size distribu-
tion satisfies a power law. Examples include the frequency�size distribu-
tions of faults, earthquakes, volcanic eruptions, mineral deposits, and oil
fields. We examine first the concept of self-similar fractals and then the
more general case of self-affine fractals.

A statistically self-similar fractal is by definition isotropic. In two dimen-
sions defined by x- and y-coordinates, the results do not depend on the
geometrical orientation of the x- and y-axes. A formal definition of a

Ž .self-similar fractal in two-dimensional xy-space is that f rx, ry is statisti-
Ž .cally similar to f x, y , where r is a scaling factor. This result is quantified

Ž .by the fractal relation Turcotte, 1997

�D Ž .N � r , 13i i

where the number of objects, N , and the characteristic linear dimension,i
r , are related by a power law, and the constant exponent, D, is the fractali
dimension. There are also formal limits on the acceptable values of D.
Fractals on a line have 0 	 D 	 1, fractals on a surface have 0 	 D 	 2,
and fractals in a volume have 0 	 D 	 3.

One method for determining the fractal dimension of a rocky coastline
is to determine the number of boxes required to cover a map of the
coastline. If the number of boxes with dimension r required to cover the1
rocky coastline is N and if the number of boxes with dimension r1 2
required to cover the rocky coastline is N , then the rocky coastline is a2

Ž . Ž . Ž .�Dself-similar fractal if N and N satisfy Eq. 13 , i.e., N �N � r �r .1 2 1 2 1 2
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A statistically self-affine fractal is generally not isotropic; the x- and
y-coordinates can scale differently. The boxes used to quantify self-affine
fractal are rectangular instead of square. A definition of a self-affine

Ž .fractal Mandelbrot, 1982; Voss, 1985c in a two-dimensional xy-space is

Ž H a . Ž . Ž .f rx , r y is statistically similar to f x , y , 14

where x and y are variables, r is a scaling factor, and Ha, the Hausdorff
exponent, is a constant.

For the special case where Ha � 1, the self-affine fractal is also self-
similar. Topography along a linear track is usually an example of a
naturally occurring, self-affine fractal. Consider the mean of many �h,
where �h is the difference in elevation between pairs of points separated
by a horizontal distance L. Self-affinity of topography implies that

Ž . H a Ž .�h L � L , 15

Ž .where Ha is again the Hausdorff exponent. Ahnert 1984 found that
Ž .actual topography is in very good agreement with Eq. 15 taking Ha �

0.6 � 0.1.
A deterministic construction of a self-affine fractal is illustrated in Fig. 2

Ž .Mandelbrot, 1985; Section 3.3 of Barabasi and Stanley, 1995 . In this´
deterministic construction, a rectangular region with width r and arbitrary0
height h is considered. Note that the aspect ratio of this rectangle is0
irrelevant since the units of r and h are arbitrary. At all orders this0 0

Ž . Ž .fractal construction will begin at 0, 0 and end at r , h . At zero order,0 0
Ž . Ž .Fig. 2a, a straight line is drawn between 0, 0 and r , h . At first order,0 0

Fig. 2b, the self-affine fractal is defined by dividing the horizontal coordi-
nate into four equal parts so that r � r �4 and dividing the vertical1 0
coordinate into two equal parts so that h � h �2. Connecting the points1 0
Ž . Ž . Ž . Ž .0, 0 , r �4, h �2 , r �2, 0 , and r , h gives the generator that will be0 0 0 0 0
used for second and higher orders in this fractal construction, where the
generator will replace each straight-line segment of preceding orders.

In the second-order fractal illustrated in Fig. 2c, the generator has
replaced each straight-line segment in the first-order fractal. At second
order, the horizontal coordinate has been divided into sixteen equal parts
so that r � r �16, and the vertical coordinate has been divided into four2 0
equal parts so that h � h �4. In terms of the formal definition of a2 0

Ž . Ž .self-affine fractal given in Eq. 14 , f x�4, y�2 is statistically similar to
Ž .f x, y ; at each step the horizontal coordinate has been divided into four

equal parts and the vertical coordinate into two equal parts. Thus the
1 1H aHausdorff exponent can be obtained from r � and r � . This gives4 2

1 1 1H aŽ . � with the result Ha � . This construction of a self-affine fractal4 2 2
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Ž .FIG. 2. Illustration of a deterministic self-affine fractal. a At zero order, a rectangular
Ž .region of width r and height h is considered. A straight-line segment extends from 0, 0 to0 0

Ž . Ž .r , h . b The first-order self-affine fractal is given. This construction also serves as the0 0
Ž .generator for higher-order fractals. c Each first-order straight-line segment in Fig. 2b is

replaced by the rescaled generator from Fig. 2b to give the second-order fractal construction.
Ž .d Each second-order straight-line segment in Fig. 2c is replaced by the rescaled generator

Ž .from Fig. 2b to give the third order fractal. e The construction is carried out to sixth order.

is extended to third order in Fig. 2d, where the generator has replaced
each straight-line segment in the second-order fractal. In Fig. 2e, we
extend this construction to sixth order. Note that this sixth-order construc-
tion looks very similar to a profile of topography. As we see later, this
deterministic self-affine fractal construction has the same long-range per-
sistence characteristics as both topography and Brownian motions.
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To determine the fractal dimension of this self-affine fractal we use the
Ž .box-counting method Voss, 1988 . For self-similar fractals we use square

boxes, but for self-affine fractals it is necessary to use rectangular boxes.
At zero order consider the single rectangular box with width r and height0
h ; thus N � 1. At first order we have r � r �4, so we will use rescaled0 0 1 0
rectangular boxes with width r �4 and height h �4. The rescaled box has0 0
the same aspect ratio as the original box. We wish to determine how many
of these boxes are required to cover the first-order fractal illustrated in

Ž .Fig. 2b. This is illustrated in Fig. 3, where we find N � 8. Using Eq. 13 ,1
we find

Ž . Ž . Ž .log N �N log 8 3 log 2 31 0 Ž .D � � � � � 1.5. 16Ž . Ž . Ž .log r �r log 4 2 log 2 20 1

The fractal dimension, D, can be an integer, in which case it is equivalent
to a Euclidean dimension. Euclidean dimensions of a point, line, square,
and cube are, respectively, 0, 1, 2, and 3. In general, D is not integer, but
some fraction between integers; this is the origin of the word fractal. The

Ž .fractal dimension D � 1.5 from Eq. 16 is intermediate between D � 1.0
for a straight line and D � 2.0 for a square.

1.6. Gaussian White Noises and Brownian Motions

The classic example of a stationary, discrete time series is a Gaussian
white noise. Consider a variable � , n � 1, 2, 3, . . . , N, with a Gaussiann

FIG. 3. Box-counting technique applied to the first-order self-affine fractal given in Fig. 2b.
To determine its fractal dimension, rectangular boxes with width r � r �4 and height1 0

Ž .h � h �4 are used. This results in N � 8 shaded boxes out of 16 covering the fractal1 0 1
construction. Noting that N � 1 box for the single box of width r and height h , we find the0 0 0
fractal dimension D � 1.5.
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distribution of values that are uncorrelated and random; the distribution
has zero mean and variance V � 	 2, where 	 is the standard deviation� � �

of the � . The time series is stationary, so the variance does not vary forn
different subintervals. A white noise is a time series constructed with a set
of y � � . Four examples of synthetic Gaussian white noises are given inn n
Fig. 4a. In each case, V � 1 and a different set of random numbers has�

been used.
The classic example of a nonstationary time series is a Brownian motion,

obtained by summing a Gaussian white-noise sequence. For an excellent
review of the theory and history of the Brownian motion, see Wang and

Ž . �Uhlenbeck 1945 . The values in a Brownian-motion time series y aren
given by

n
� Ž .y � � . 17Ýn i

i�1

The white-noise sequences shown in Fig. 4a have been summed to give the
four Brownian motions illustrated in Fig. 4b.

The variance of a Brownian motion, after n values of the white noise
have been summed, is given by

� 2 Ž .V � 	 n , 18n �

where 	 2 � V is the variance of the white-noise sequence. The corre-� �

sponding standard deviation of the motion is given by
� 1�2 Ž .	 � 	 n . 19n �

This result is compared with each of the four Brownian motions illustrated
in Fig. 4b.

Ž .In Eq. 14 , the Hausdorff exponent, Ha, was introduced in the context
Ž H a .of the self-affine scaling relation, where f rx, r y is statistically similar to

Ž .f x, y , and the vertical and horizontal coordinates can scale differently.
The standard deviation of a self-affine time series taken over n values is
given by 	 . We can associate 	 with the y-coordinate of the self-affinen n
relation, and the variable n with the x-coordinate. Then the dependence
of the standard deviation, 	 , on n can be expressed in terms of then

Ž .Hausdorff exponent, Ha, Mandelbrot and Van Ness, 1968 , according to
H a Ž .	 � n , 20n

with the corresponding variance given by
2 H a Ž .V � n . 21n

For a white noise, 	 is independent of n; thus Ha � 0. For any stationaryn
time series, 	 must be independent of n, by definition; thus againn
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Ž .FIG. 4. a Four examples of Gaussian white noises. Successive values are chosen randomly
Ž . Ž .from a Gaussian distribution with zero mean y � 0 and unit variance V � 1 . Adjacent

Ž . Ž . Ž .values are not correlated. b The four white noises in a are summed using Eq. 17 to give
four Brownian motions. In each case, the envelope given by the standard deviation after n

Ž .steps, Eq. 19 , is included.
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1Ž . Ž .Ha � 0. From Eqs. 19 and 20 we find Ha � for a Brownian motion.2
1We also obtained Ha � for the deterministic self-affine fractal illus-2

trated in Fig. 2.
In Section 1.5, we gave an example of a deterministic fractal construc-

tion with a Hausdorff exponent of Ha � 0.5 and calculated this construc-
tion to have a self-affine fractal dimension of D � 1.5. We now obtain a

Ž .general relation Voss, 1988 , one that can be applied to self-affine time
series, between the Hausdorff exponent, Ha, and the self-affine fractal
dimension, D. A derivation of the fractal dimension of a self-affine time
series can be obtained by using the box-counting method. We first intro-
duce a rectangular reference ‘‘box’’ with a width T ; the height of the

Ž . Ž .reference ‘‘box’’ is 	 � 	 T , where 	 T is the standard deviation ofT
Ž .the signal y over the interval T. Since 	 T is in general a function of T ,

Ž .we are studying, by definition, nonstationary processes see Section 1.4 ;
the standard deviation changes with the interval considered. The units of
the signal y, and therefore the units of the signal’s standard deviation 	 ,T
can differ from the units of the interval T. Therefore, the aspect ratio
Ž .width to height � T�	 of the box can have arbitrary units. As anT
example, we consider the sixth-order deterministic self-affine fractal con-
struction illustrated in Fig. 2e. This is analogous to a time series, with y
varying from 0 to h over the interval 0 to r . The standard deviation of0 0

Ž .this series of data Fig. 5a over the interval T � r is calculated to be0
Ž .	 � h �4. The reference ‘‘box’’ for this example Fig. 5b has a width ofT 0

T � r and a height of 	 � h �4.0 T 0
We next divide the interval T into N equal-sized smaller intervals with

length 
 � T�N. The standard deviation of the signal y over each of these
Ž .smaller intervals will be approximately the same, and is given by 	 � 	 
 .


Ž .In our example Fig. 5a , we let 
 � T�4 � r �4; the standard deviation of0
the signal y over each of the smaller intervals 
 is calculated to be
	 � h �8. We then introduce smaller rescaled boxes of width 
 � T�N
 0
and height 	 � 	 �N. These boxes have the same aspect ratio as theN T
reference box. However, the standard deviation of the signal y over the

Ž .interval 
 , 	 � 	 
 , is not necessarily equal to 	 � 	 �N. In our
 N T
Ž .example Fig. 5b , we divide our reference box into scaled smaller boxes

with width 
 � T�4 � r �4 and height 	 � 	 �4 � h �16.0 N T 0
We determine the number of scaled smaller boxes N of size 
 by 	b N

that are required to cover the area of width T and height 	 . In our


Ž .example Fig. 5b , we find N � 8 boxes. This construction is generalizedb
by writing

T	 	 	
 
 
2 Ž .N � � N � N . 22b 
	 	 	N N T
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Ž .FIG. 5. a The sixth-order deterministic self-affine fractal construction from Fig. 2e is
Ž .shown with the standard deviations calculated for the entire series T � r and for four0

Ž . Ž .equal smaller subdivisions of the series 
 � r �4 . b Box counting for the standard0
deviations. The reference ‘‘box’’ has width T , the length of the original series, and height 	 ,T
the standard deviation for the entire series. The reference box is scaled by 4 in width and
height, giving smaller boxes with width 
 � T�4 and height 	 � 	 �4. The number ofN T

Ž .smaller scaled boxes 
 by 	 required to cover an area T by 	 , where 	 is the standardN 
 


deviation of the series over each smaller subinterval 
 , is N � 8.b

Ž .However, from Eq. 20 we have

Ž . H a Ž .	 T � T , 23

so we can write

H aŽ . Ž .	 	 
 	 T�N T�N 1
 Ž .� � � � , 24H až /Ž . Ž .	 	 T 	 T T NT
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Ž . Ž .and combining Eqs. 22 and 24 gives
2�H a1 T

2 2�H a Ž .N � N � N � . 25b H a ž /ž / 
N

Ž . Ž . Ž .2�H aIn our example Fig. 5 , N � 8, and T�
 � 4, i.e., 8 � 4 givingb
Ž . Ž .2 � Ha � 1.5, thus Ha � 0.5. Equation 25 is a fractal relation: the
number of boxes, N , is inversely proportional to the size of the subinter-b

Ž .val considered, raised to a constant power 2 � Ha . The interval over
which the signal y is considered, T , is a constant. We can extend this
analysis to smaller intervals of 
 , and at each different subinterval consid-

Ž .ered, 
 , there will be a corresponding N boxes. Equation 25 becomesi b i

2�H aT
Ž .N � . 26bi ž /
 i

Ž .If we compare this to the power-law relation from Eq. 13 and associate 
 i
with r and N with N , theni b i i

Ž .Ha � 2 � D. 27
1 3For a Brownian motion, Ha � and we have D � . We obtained the2 2

same result for our deterministic self-affine fractal example illustrated in
1 3Fig. 2: Ha � and D � . Since for the self-affine fractals illustrated2 2

Ž . Ž .here, the value for D is always between 1 a line and 2 a square , Ha for
a self-affine fractal is between 0 and 1. We have derived here a general
equation for Ha as a function of D. Self-affine fractal time series,
1 	 D 	 2, are a subset of self-affine time series. A smooth time series
Ž .low frequencies dominate over high frequencies approaches a straight
line so that it has a fractal dimension near 1. A very rough time series
Ž .with a large high-frequency component becomes area filling and has a
fractal dimension near 2.

An alternative measure of a self-affine time series is that the semivari-
Ž . Ž . Ž .ogram, � s or � from Eqs. 7 or 8 , scales with s or k, the lag, such thatk

Ž .Mandelbrot and Van Ness, 1968

Ž . 2 H a Ž .� s � s 28
and

2 H a Ž .� � k , 29k

where, again, Ha is the Hausdorff exponent. The dependence of the
semivariogram on the lag is directly analogous to the dependence of the
variance of a time series, V , on the length of the time series, n, as given inn

Ž . Ž . Ž .Eq. 21 . We verify Eqs. 28 and 29 when we determine the semivari-
ograms of synthetic fractional motions in Section 3.4.
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The Hausdorff exponent, Ha, and the fractal dimension, D, are both
measures of the strength of persistence for a subclass of self-affine time

Ž .series, for which 0 	 Ha 	 1 1 	 D 	 2 . There are a number of other
measures for the strength of persistence, discussed in this paper, which can
be used to calculate the strength of persistence for self-affine time series
that do not fall in the range where Ha and D are useful. General
discussions of methods used to estimate Ha, D, and other measures of the

Ž .persistence of time series have been given by Korvin 1992 , Schepers et al.
Ž . Ž . Ž .1992 , Schmittbuhl et al. 1995 , and Hall 1997 .

2. SPECTRAL ANALYSIS

2.1. The Fourier Transform

Spectral analysis is a technique that estimates the spectral density
function, or spectrum, of a time series. In the past, most spectral analyses
were concerned with finding periodicities in data; today, they are widely
used to obtain a complete spectrum over a wide range of frequencies. One
standard approach is to carry out a Fourier transform on a time series.
Fourier analysis is essentially concerned with approximating a function by
a sum of sine and cosine terms. A large body of literature has been written
on Fourier analysis and spectral analysis in general; comprehensive sum-

Ž .maries have been given by Priestley 1981 and Percival and Walden
Ž . Ž .1993 . Press et al. 1994 provide an easy to understand basic theory
and computational implementation of most techniques found in spectral
analysis.

Ž .A time series can be prescribed either in the time domain as y t or in
Ž .the frequency domain in terms of the Fourier transform, Y f , where f is

Ž .the frequency. The quantity Y f is generally a complex number indicating
both the amplitude and the phase of the signal. We first begin with the

Ž . Ž .general case where g t is a continuous function that satisfies g t �
Ž . Ž .g t � kT , k � 0, � 1, � 2, � 3, . . . , and the function g t is defined

Ž .for all t, �� � t � ��. If T is the smallest number that satisfies g t �
Ž . Ž .g t � kT , then the function g t is periodic with a period T. If there is no

Ž . Ž . Ž . Ž .value of k other than k � 0 for which g t � g t � kT holds, then g t
Ž .is nonperiodic. The Fourier transform, G f , of the periodic continuous

Ž .function, g t , is defined as

�
2� i f tŽ . Ž . Ž .G f � g t e dt. 30H

��
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The complementary inverse Fourier transform is then given by

�
�2 � i f tŽ . Ž . Ž .g t � G f e df . 31H

��

Ž . Ž .The exponents in Eqs. 30 and 31 represent an infinite number of sine
�2 � i f t Ž . Ž .and cosine functions, with e � cos 2� ft � i sin 2� ft . The i in the

Ž . Ž .exponents is the square root of �1. One goes between g t and G f by
Ž . Ž .the use of the Fourier transform equations given in Eqs. 30 and 31 . The

Ž .Fourier transform, G f , of the time series represents the contribution of
each sine and cosine function at each frequency, and is commonly called

Ž .the Fourier spectrum of g t .
A time series with three periodic components at periods T , T�2, and

T�5, will have spikes in its Fourier spectrum at the frequencies f � 1�T ,
2�T , and 5�T. If T has the units of seconds, then f will have the units of
cycles per second. A white noise has no embedded frequencies and its
Fourier spectrum is approximately flat. We use frequency, f , instead of the
alternative angular frequency,  � 2� f , because f is more informative for
the time series we consider in this article.

For this article, we are interested in stochastic time series that are
nonperiodic and defined over a finite interval, 0 	 t 	 T. For t outside this

Ž . Ž .interval t � 0 and t � T , we require y t � 0. A periodic time series is
normally composed of a finite number of subperiods, corresponding to a
finite number of spikes at discrete frequencies in the resulting Fourier
spectrum. A nonperiodic function has no fixed period or subperiods and
instead can be viewed as being composed of an infinite number of
subperiods in the time domain or a continuous and infinite range of

Ž .frequencies in the Fourier frequency domain. We use the notation Y f , T
Ž .when taking the Fourier transform of y t over the interval 0 	 t 	 T. For

a stochastic nonperiodic time series, the Fourier transform pair given by
Ž . Ž . Ž .Eqs. 30 and 31 becomes Priestley, 1981

T 2� i f tŽ . Ž . Ž .Y f , T � y t e dt 32H
0

and
�

�2 � i f tŽ . Ž . Ž .y t � Y f , T e df . 33H
��

Ž . Ž .In the time domain, Eq. 32 , the integral is from 0 	 t 	 T , since y t � 0
Ž .outside this range; however, in the frequency domain, Eq. 33 , there is a

continuous range of frequencies possible, �� � f � ��, since we are
Ž . Ž .dealing with a nonperiodic function. In Eq. 32 we could have defined y t

Ž .to range from �T�2 	 t 	 T�2 commonly done in many texts instead of
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Ž .0 	 t 	 T ; however, the result in Eq. 32 would be the same except that
the integral would be �T�2 to T�2 instead of 0 to T. The units of the

Ž .Fourier transform depend on the units of the time series y t . For
Ž .example, if the units for y t are in amperes and the units for t in seconds,

Ž .then the Fourier transform, Y f , T , has the units of ampere-second, and
the frequency, f , has the units of second�1.

The concepts described above are easily modified for discrete time
series. Consider the discrete time series, y , n � 1, 2, 3, . . . , N, where then
total time interval, T , has been divided into N equal intervals of length � ,
i.e., � � T�N. The units of � are those of T ; N is dimensionless. Many
authors do not include � in their studies of discrete time series; they
assume � � 1 time unit. We include � in the equations that follow so that
the units will be analogous to the equations given for continuous time

Ž . Ž .series. If we approximate the integrals given in Eqs. 32 and 33 , then the
Ž .discrete Fourier transform DFT applied to the discrete time series, y , isn

Ž .Priestley, 1981

N
2� inm�N Ž .Y � � y e , m � 1, 2, 3, . . . , N , 34Ým n

n�1

and the inverse DFT is

N1
�2 � inm�N Ž .y � Y e , m � 1, 2, 3, . . . , N. 35Ýn mN� m�1

There are now discrete values in both the time and frequency domains.
ŽMany variations on the DFT pairs exist see, e.g., Percival and Walden,

.1993, for a complete discussion . Some authors let the running variable in
Ž . Ž . Ž .Eqs. 34 and 35 vary from 0 to N � 1 . For consistency with the rest of

this article, we allow the index to run from 1 to N; the Fourier pairs are
Ž .equivalent for the two different running indices Priestley, 1981 . The

Fourier coefficients, Y , m � 1, 2, 3, . . . , N, are associated with frequenciesm
Ž .f � m� N� . As before, the Fourier coefficients, Y , are complex num-m m

bers with real and imaginary parts, Y � a � ib . The complex modulusm m m
of Y ism

2 2� � Ž . Ž .'Y � a � b . 36m m m

The Fourier coefficients are symmetric such that

� � � � Ž .Y � Y . 37m N�m

� � � � � � � �For example, if N � 4096, then Y � Y , Y � Y , etc. The highest1 4095 2 4094
frequency resolvable using Fourier analysis of a discrete time series, y ,n
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n � 1, 2, 3, . . . , N, is the frequency with a period of 2 time units, 2� . Any
spectral components of a higher frequency cannot be distinguished from
lower-frequency components; this is aliasing. Consequently, the highest
frequency that we can resolve in Fourier space will be f � 0.5, wherem

Ž .f � m� N� ; the unique Fourier coefficients will be given by Y , m �m m
1, 2, 3, . . . , N�2.

2.2. The Power-Spectral Density

Ž . Ž .The modulus of the complex number Y f � a � bi is given by
� Ž . � Ž 2 2 .1�2Y f � a � b . In the frequency domain, a measure of the energy

� Ž . � 2distribution of a signal as a function of frequency is Y f , T . As T
approaches infinity, the total energy diverges and also approaches infinity.
Thus it is standard practice to convert the energy to power; that is, we

� Ž . � 2 Ž .divide Y f , T by T. The power-spectral density function of y t is
Ž .defined Priestley, 1981 as

2Ž .Y f , T
Ž . Ž .S f � lim . 38½ 5TT��

Ž . Ž .The function S f in Eq. 38 is for the limit as T goes to infinity. For a
Ž .discrete time series, one calculates an estimate of S f . A plot of this

Ž .estimate of S f against f is known as a periodogram. In terms of units, if
Ž . Ž . Ž .y t is in amperes, t and T in seconds, and Y f , T in ampere-seconds,

� Ž . � 2 2 2then Y f , T has the units of ampere -second , and the power-spectral
Ž . 2distribution function, S f , has the units of ampere -second.

Ž .The quantity S f df in a periodogram represents the contribution to
Ž .the total power from those components in the time series, y t , whose

frequencies lie in the interval between f and f � df. For a time series that
Ž .is self-affine, the power-spectral density is defined e.g., Voss, 1985a to

have a power-law dependence on frequency

Ž . �� Ž .S f � f . 39

This relation also defines a self-affine fractal in the same way that
�D Ž .N � r , Eq. 13 , defines a self-similar fractal. The implications ofi i

Ž .Eq. 39 will be a major focus of this article. Because of the power-law
Ž .dependence of S f on f , self-affine time series with � � 0 exhibit

long-range persistence, and self-affine time series with � � 0 exhibit
long-range antipersistence. The value of � , the slope of the best-fit

Ž Ž .. Ž .straight line to log S f vs log f , is a measure of the strength of
persistence or antipersistence in a time series.
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The power-spectral density function, S , for a discrete time series, y ,m n
can be written as

� � 22 Y Nm Ž .S � lim , m � 1, 2, 3, . . . , . 40m ½ 5N� 2N��

Ž .The factor of 2 in Eq. 40 is a result of summing Y from m � 1 to N�2m
instead of N. For a discrete self-affine time series, the power-spectral
density, S , again has a power-law dependence on frequencym

��m N
Ž .S � , m � 1, 2, 3, . . . , . 41m ž /N� 2

This is equivalent to
N

�� Ž .S � f , m � 1, 2, 3, . . . , . 42m m 2
As an example, we obtain the discrete power-spectral density for two

Ždiscrete time series. We use the fast Fourier transform e.g., Press et al.,
.1994 , an algorithm that is commonly used to speed up the computation

of the discrete Fourier transform. The first time series is a white noise
Ž . Ž .Fig. 6a , where the values are randomly chosen from a Gaussian normal
distribution with mean y � 0 and variance V � 1. The second time series

Ž .is the corresponding Brownian motion Fig. 6c obtained by summing the
Ž .white noise given in Fig. 6a using Eq. 17 . The Brownian motion has a

mean y � �23 and variance V � 950. Both time series have N � 4096
points.

The two resulting periodograms, S plotted as a function of f withm m
log�log scaling, are shown in Figs. 6b, d. Plotted on log�log axes, there are

Ž .many more values of S at the high frequencies f large than at lowm m
Ž .frequencies. Therefore, to obtain the best-fit straight line to log Sm

Ž .vs log f , we bin the data. We first divide the f axis into equalm m
Ž .log-increments, then for each log f bin calculate the average of all them

Ž .log S that are in that bin. The best-fit least-squares straight line is thenm
Ž Ž ..calculated for the resulting average log S as a function of the center ofm

Ž .each log f bin; these values are plotted as circles in Figs. 6b, d, with them
best-fit straight line to these circles shown.

We use � to indicate the negative of the slope of the best-fit straightPS
Ž .line when applying power-spectral analysis, Eq. 42 . Because the white

noise is a stationary uncorrelated time series, we expect the power spec-
trum to be essentially flat; i.e., all frequencies are present in equal
amounts. For the example given in Fig. 6b we find � � �0.03, close toPS

Ž .the theoretical value of � � 0. The Brownian motion Fig. 6c is a non-
Ž .stationary signal that is much ‘‘smoother’’ than the white noise Fig. 6a .
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Ž . Ž .FIG. 6. Two examples of power-spectral analysis. Two time series are given in a and c
Ž . Ž . Ž .with their respective periodograms given in b and d . The first time series a is a white

noise with N � 4096 points, and was obtained by randomly choosing values from a Gaussian
Ž .distribution of values with a mean, y � 0, and a variance, V � 1. The second time series c is

Ž .a Brownian motion obtained by summing the white noise in a ; it has a mean, y � �23, and
Ž .a variance, V � 950. The Fourier power spectrum periodograms for the white noise and

Ž . Ž .Brownian motion are shown, respectively, in b and d . In both periodograms, the power
Ž .spectral-density function, S , from Eq. 40 is given as a function of frequency f � m�N,m m

Ž .where m � 1, 2, 3, . . . , N�2. The circles are obtained by averaging the log S into equalm
Ž .log f bins. In the log�log plots, the value of � is the negative of the slope of the best-fitm PS

least-squares straight line to the circles. The white noise has � 
 0, and the BrownianPS
motion has � 
 2.PS
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FIG. 6. Continued.

Ž .Thus, we expect that the low frequencies f small will be dominant overm
Ž .the high frequencies f large , and that the slope of the best-fit straightm

line will be negative and � positive. This is found to be true; the Brownian
motion has a slope �1.97, i.e., � � 1.97.PS

Ž .We found that a Brownian motion a summed white noise has � 
 2PS
and a white noise has � 
 0; the summed time series has a � that isPS PS
approximately �2 larger than the nonsummed time series. This can be
generalized to all self-affine time series: summing a self-affine time series
shifts the theoretical power-spectral density exponent, � , by �2. We can
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Žalso reverse the process; the differences in adjacent values the first
.differences of a Brownian motion result in a white noise. This can also be

generalized to all self-affine time series: taking the first differences shifts
the theoretical power-spectral density exponent, � , by �2. We will now

Ž .show that this is true by considering the derivative first difference of a
self-affine time series.

Ž .The self-affine time series, y t , has a corresponding Fourier transform,
Ž . Ž . Ž .Y f , T , defined by Eq. 32 and a power-spectral density function, S f ,

Ž . Ž . �Ž .defined by Eq. 38 . The derivative of y t , y t , with its corresponding
Ž .inverse Fourier transform from Eq. 33 , is given by

Ž . �dy t
� � �2� i f tŽ . Ž . Ž .y t � � Y f , T e df . 43Hdt ��

Ž . �Ž .The corresponding Fourier transform from Eq. 32 of y t is

T� � 2� i f tŽ . Ž . Ž .Y f , T � y t e dt. 44H
0

Ž .Taking the derivative of both sides of Eq. 33 gives

Ž . �dy t d
� �2� i f tŽ . Ž .y t � � Y f , T e dfHdt dt �� Ž .45

�
�2 � i f tŽ . Ž .� �2� if Y f , T e df .H

��

Ž . Ž .Comparing the right-hand sides of Eqs. 43 and 45 , the integrands must
be equal; therefore,

� Ž . Ž . Ž . Ž .Y f , T � �2� if Y f , T . 46

Ž . �Ž .Using Eq. 38 , the power-spectral density function, S f , corresponding
�Ž .to y t is

2Ž . Ž .�2� if Y f , T
� 2 2Ž . Ž . Ž . Ž .S f � lim � 4� f S f , 47½ 5TT��

Ž . Ž . Ž .where S f is the power-spectral density function, Eq. 38 , of y t .
Ž .Finally, from Eq. 39 , where the power-spectral density function has a

power-law dependence on frequency, we can write

��
� Ž 2 2 . �� Ž .f � 4� f f , 48

which simplifies to
��

� ���2 Ž .f � f 49
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and
� Ž .� � � � 2. 50

Ž .If the self-affine time series, y t , is characterized by a power-spectral
Ž .exponent, � , then the first difference derivative of that time series is

characterized by a power-spectral exponent of � � 2. We can use the
Ž . Ž . Ž .same logic as that shown in Eqs. 43 through 50 to show that if y t has

Ž . Ž .a characteristic � , then the running sum integral of y t is characterized
by a power-spectral exponent of � � 2. Thus since � � 0 for a white
noise, we expect � � 2 for a Brownian motion, close to the value found. In
subsequent sections, we will use this summing and differencing property as
part of the construction of a variety of synthetic self-affine time series.

The power-spectral density function can also be related to other statisti-
cal measures of time series. We introduced the autocorrelation function

Ž . Ž . Ž .r � c �c in Eq. 4 , with c given by Eq. 5 and c the variance byk k 0 k 0
Ž .Eq. 6 . The autocorrelation function is directly related to the power-

Ž .spectral density Box et al., 1994 by

N�1 k 2� mk N
S � 2 c � 2 1 � c cos , m � 1, 2, 3, . . . , .Ým 0 k½ 5ž / ž /N N 2k�1

Ž .51

The power-spectral density is the Fourier transform of c . There are nok
Ž .sine components in Eq. 51 because the autocorrelation function is an

Ž . Ž Ž ..even function symmetric around the y axis . There is a 1 � k�N in
Ž .Eq. 51 because of the way we defined the autocorrelation function in Eq.

Ž . Ž .5 ; note that in many texts this factor would not be included in Eq. 51 .
The autocorrelation function and the power-spectral density are equiva-
lent ways of describing a stochastic process; both contain the same infor-
mation but express it in different ways. In this article, we use the power-
spectral density in order to quantify the persistence in time series.

We next relate the power-spectral density function, S , to the variance,m
V , of a discrete time series, y , n � 1, 2, 3, . . . , N. The successive valuesN n
of the time series y are prescribed at equal increments of time, � . Usingn

Ž .Parseval’s theorem e.g., Percival and Walden, 1993 , we write

N�2 N�2N1 2 22 2Ž . � � Ž .V � y � y � Y � S . 52Ý Ý ÝN n m m2 2N N�N �n�1 m�1 m�1

The variance, V , is proportional to the summation of S , the power-spec-N m
tral density function. Parseval’s theorem states that the total power in a
signal is the same whether it is computed in the time domain or the
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frequency domain. Note that many authors take y � 0 in writing Parseval’s
Ž .theorem. Equation 52 gives the result that the variance of a discrete time

series of length N is proportional to the sum of the power-spectral density
coefficients, S .m

2.3. The Relation of � , Ha, and D

Ž .Using a derivation from Voss 1985c , we now obtain a relationship
between the power � , the Hausdorff exponent Ha, and the fractal dimen-

Ž .sion D. Consider a time series y t specified over the interval 0 	 t 	 rT.1
Ž . Ž .Next consider two time series that are based on y t : y rt with 0 	 t 	 T ,1 1

Ž .and y t also with 0 	 t 	 T. These are related by2

1
Ž . Ž . Ž .y t � y rt , 0 	 t 	 T , 532 1H ar

where Ha is the Hausdorff exponent. This process is illustrated in Fig. 7
Ž .for r � 0.2, Ha � 0.5, and T � 1.0. In Fig. 7a, we show a time series y t ,1

Ž .0 	 t 	 T , with the area under the curve of y t shaded from 0 	 t 	 rT.1
Ž . Ž .Figure 7b shows y rt from 0 	 t 	 T ; i.e., the time axis of y t in Fig. 7a1 1

Ž .has been ‘‘stretched out’’ in Fig. 7b by a factor of 1�r � 5. Finally, in
Ž . Ž .�H aFig. 7c, we have stretched the amplitude of y rt by a factor of 1�r1

� 50.5 
 2.32. The fundamental property of a self-affine time series is that
Ž . Ž .y t taken over the time period rT shaded part in Fig. 7a has the same1

Ž . Žstatistical properties as y t taken over the time period T shaded part in2
. Ž . Ž . Ž .Fig. 7c , with y rt and y t related by Eq. 53 .1 2

Ž . Ž .The Fourier transform, Eq. 32 , of y t taken over T has a continuous2
range of frequencies, f , and is given by

T 2� i f tŽ . Ž . Ž .Y f , T � y t e dt. 54H2 2
0

Ž . �Substituting Eq. 53 and making the change of variable t � rt, we obtain

Ž � . �y t dt�rT 1 2� i f t�rŽ . Ž .Y f , T � e . 55H2 H a rr0

Ž . � � Ž .Simplifying Eq. 55 , substituting f � f�r and T � T�r into Eq. 55 , and
Ž .using Eq. 32 , we have

1 � 1� �T � � � �2� i f tŽ . Ž . Ž . Ž .Y f , T � y t e dt � Y f , T . 56H2 1 1H a�1 H a�1r r0
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Ž . Ž .FIG. 7. Rescaling a self-affine time series. a A Brownian motion Ha � 0.5 is given by
Ž .the time series y t , with 0 	 t 	 T. The Brownian motion has a Hausdorff exponent,1

Ha � 0.5, and was obtained by summing a Gaussian white noise. For this example, we let
Ž . Ž .r � 0.2 and T � 1.0. The area under the curve of y t is shaded from 0 	 t 	 rT. b The1

Ž . Ž .time axis of y t , the time series shown in Fig. 7a, is ‘‘stretched’’ by a factor of 1�r � 5.1
Ž .The new time series, y rt , is shown for 0 	 t 	 T. The shaded area represents the part of1

Ž .y t from Fig. 7a that was expanded. The ‘‘A’’ in all three figures is to aid the eye in following1
Ž .the part of the time series that is rescaled from step to step. c The amplitude of the

Ž . Ž .�H a 0.5‘‘stretched’’ time series from Fig. 7b, y rt , is now expanded by a factor of 1�r � 5 �1
Ž . Ž .2.32, giving a new time series y t , 0 	 t 	 T. Since the original time series, y t , was2 1
Ž .self-affine, the new time series, y t , has the same statistical properties as the original time2

series.
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Ž .From the definition of the power-spectral density, Eq. 38 , and using it in
Ž .the right-hand side of Eq. 56 , we obtain

21 1 12 � �Ž . Ž . Ž . Ž .S f � lim Y f , T � lim Y f , T . 572 2 1H a�1½ 5 ½ 5T T rT�� T��

Ž . �Simplifying Eq. 57 , substituting T � T�r, and again comparing with the
Ž .definition of the power-spectral density, Eq. 38 , we arrive at

1 1 12� � �Ž . Ž . Ž . Ž .S f � lim Y f , T � S f . 58�2 1 12 H a�1 2 H a�1½ 5� Tr rT ��

We next use the fact that the power-spectral density has a power-law
Ž . Ž . ��dependence on frequency in Eq. 39 and assume S f � Af and2

Ž �. Ž �.�� Ž .S f � A f , where A is a constant of proportionality. Then Eq. 581
becomes

���Ž .A f
�� Ž .Af � . 592 H a�1r

The frequency f � � f�r, so

��1 f
�� Ž .f � , 602 H a�1 ž /rr

which simplifies to

r �

Ž .1 � . 612 H a�1r

Ž .For the right-hand side of Eq. 61 to be 1, and from the fact that
Ž .Ha � 2 � D, Eq. 27 , it follows that

Ž .� � 2 Ha � 1 � 5 � 2 D. 62

Ž .For a self-affine fractal 0 	 Ha 	 1, 1 	 D 	 2 we have 1 	 � 	 3. For
1 3Ž .a Brownian motion with Ha � D � we have � � 2. Although Ha,2 2

the Hausdorff exponent, is only applicable for self-affine time series from
0 	 Ha 	 1, the spectral-power exponent, � , is a measure of the strength
of persistence which is valid for all � , not just 1 	 � 	 3. For self-affine
time series, a white noise has � � 0, an antipersistent time series has

Ž .� � 0, and a persistent time series has � � 0. Brown 1987 obtains
the fractal dimension directly by converting self-affine time series to
self-similar time series and then using the ruler method to determine the

Ž .fractal dimension also see De Santis, 1997 .
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2.4. Weak vs Strong Persistence

We now look at the strength of persistence of a self-affine time series
and relate it to the stationarity of the time series. Substitution of the

Ž .power-law dependence in Eq. 42 of the power-spectral density coeffi-
Ž .cients, S , on frequency, f , into 52 givesm m

N�2 N�22 A ��Ž . Ž .V � S � f , 63Ý ÝN m mN� N�m�1 m�1

where the frequency associated with each S is f � m�N, A is a positivem m
constant of proportionality, and V is the variance of the discrete timeN
series, y , n � 1, 2, 3, . . . , N. The minimum value for the frequency f isn m
f � 1�N; this will approach 0 as N approaches infinity. The maximumm

Ž .value for f will always be a constant, f � N�2 �N � 0.5. We convertm m
Ž .the sum in Eq. 63 to an integral by dividing the limits of the sum into

Ž . Ž .N � 1 intervals of � f � 1�N� , with the result

N�2 � f df1�2 Ž . Ž .V � A � A � V N . 64Ý HN � �f f1�Nmm�1

Ž .We consider the definite integral in Eq. 64 for two cases, � � 1 and
� � 1:

1�� 1��� A 1 1
� , if � � 1,ž / ž /ž /1 � � 2 N�Ž . Ž .V N � 65

A
��1 ��1Ž .2 � N , if � � 1.ž /1 � �

� Ž .�The factor A� 1 � � is positive for � � 1 and negative for � � 1. As N
becomes large, the variance converges for values of � � 1 and diverges for

Ž . Ž .� � 1. This is illustrated in Fig. 8, where the variance, V N , from Eq. 65
Ž .is given as a function of N i.e., the length of the series considered for

several values of � in the range �1 	 � 	 3. The variance converges to a
finite value for large N when � � 1, but diverges to infinity as N � �
when � � 1. The value � � 1 is a natural crossover between weak and

Ž .strong persistence in a self-affine long-range persistent time series. Below
Ž .this value, the time series is stationary weakly stationary, see Section 1.4 ;
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Ž .FIG. 8. The variance, V , Eq. 65 , of a time series, y , is plotted as a function of the lengthN n
of record, N, for values of � in the range �1 	 � � 1 and 1 � � 	 3. As N gets larger the
variance quickly converges for values of � � 1 and diverges for � � 1. Self-affine time series
are stationary for � � 1 and nonstationary for � � 1.

above this value, the time series is nonstationary. This classification is

� � 1 strong persistence nonstationary,
1 � � � 0 weak persistence stationary, Ž .66
� � 0 uncorrelated stationary,
� � 0 antipersistence stationary.

2.5. Spectral Variance and Leakage

Ž .The discrete Fourier transform given in Eq. 34 does not always provide
an accurate representation of the actual statistics of a time series. Two of
the main problems in using a discrete Fourier transform are spectral
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variance and leakage. These have been discussed comprehensively by many
Ž . Ž .authors, for example, Priestley 1981 and Percival and Walden 1993 .

The first problem, spectral variance, concerns the large amount of
scatter of the S with respect to the best-fit straight line. A clearm
illustration of spectral variation is seen in Figs. 6b, d. The standard

Ždeviation of S is 100% of the mean value of S i.e., the value after manym m
. Ž .realizations at f Press et al., 1994 . Thus when plotted on logarithmicm

scales, the periodogram exhibits approximately the same scatter at all
frequencies; i.e., the ‘‘width’’ of the scatter on a log�log plot is constant.
One solution to spectral variance is to average over many realizations of
the time series of interest. For each realization, calculate S , m �m
1, 2, 3, . . . , N�2, and then average at each corresponding f all of them
values for S . This method will reduce the standard deviation of them

Ž .scatter by the square root of the number of realizations Press et al., 1994 .
In this article, we choose not to reduce the amount of scatter, as the
general trend of the periodograms is very clear, even with scatter.

Leakage is also a serious problem. For a discrete Fourier transform, a
Ž .discrete set of frequencies f � m� N� , m � 1, 2, 3, . . . , N�2, is consid-m

Ž .ered. The width of a frequency bin is � f � 1� N� . For a stochastic time
series, there is generally a continuous range of associated frequencies

Ž .possible with both integer and noninteger fractional m. Ideally, in one
frequency bin, � f , we would like the S that represent the whole bin to bem
some sort of an average of all of the S associated with the continuous fm m
in the bin. This is not the case. The power associated with frequencies that
have integer-m is correctly represented in the frequency domain. However,
the power that is associated with frequencies that have fractional-m is
distributed to not only its own bin, but also ‘‘leaks’’ into other bins. The
result is a bias that can seriously affect the resulting power-spectral
distribution. One method to reduce leakage is ‘‘prewhitening,’’ where in its
simplest form one removes the trend and obvious periodicities from the
original time series. A good discussion of the advantages and disadvan-

Ž .tages of prewhitening is given in Percival and Walden 1993 . We choose
to use another method to reduce leakage, called windowing.

Ž .Windowing also called tapering, weighting, shading, fading involves
multiplying the N values of a time series, y , n � 1, 2, 3, . . . , N, by the Nn
values of the ‘‘window,’’ w , n � 1, 2, 3, . . . , N, before carrying out then
Fourier transform. If w � 1 for all n, then w is a rectangular windown n
Ž . Ž .the original series is left unmodified . The window or taper is normally
constructed to change gradually from zero to a maximum to zero as n goes
from 1 to N. For a complete discussion of the statistics involved with

Ž .tapering, the reader is referred to Percival and Walden 1993 . Many
books discuss the mechanics of how and which windows to use, including
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Ž . Ž .Press et al. 1994 and Smith and Smith 1995 . Two commonly used
windows are

2Ž .n � N�2
w � 1 � , n � 1, 2, 3, . . . , N , Welch window,n ž /Ž .N�2

Ž .67

1 2� n
Ž .w � 1 � cos , n � 1, 2, 3, . . . , N , Hann window. 68n ž /2 N

Ž .The Fourier coefficients from Eq. 34 are then given by

N
2� inm�N Ž .Y � � w y e , m � 1, 2, 3, . . . , N. 69Ým n n

n�1

Windowing significantly reduces the leakage when Fourier transforms are
carried out on self-affine time series, particularly for those with high

Ž .positive � ’s above � � 2 and negative � ’s.
Ž .The variance of y will be different from the variance of w y ; this willn n n

Ž .affect the total power variance in the periodogram, and the amplitude of
the power-spectral density function will be shifted. One remedy is to
normalize the time series y so it has a mean of 0, calculate the Fouriern

Ž .coefficients Y based on Eq. 69 , and then calculate the final S usingm m

2� �1 2 Y Nm Ž .S � , m � 1, 2, 3, . . . , , 70m W N� 2s s

where
N1 2Ž . Ž .W � w . 71Ýs s nN n�1

Ž .This will normalize the variance of w y so that it now has the variancen n
of the original unwindowed y .n

We close this section with a brief discussion of detrending. Many
statistical packages and books recommend removing the trend and the
mean of a time series before performing a Fourier analysis. The mean of a
time series can be set equal to 0; this will not affect the resulting Fourier
coefficients. If a window is to be used, then the mean of the original time
series should be set equal to 0, or the resulting power-spectra will be
improperly biased by the window. The variance of a time series can be

Ž .normalized to 1, and the slope �� of the resulting power-spectral
density function will not be affected. However, detrending a time series is
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controversial, and care should be taken. One way of detrending is to take
the best-fit straight line to the time series and subtract it from all of the
values. Another way of detrending is to connect a line from the first point
and the last point, and subtract this line from the time series; this forces
y � y . If a time series shows a clear linear trend, where the series1 N
appears to be closely scattered around a straight line, the trend can be
safely removed without affecting any but the lowest frequencies in the
power spectrum. However, if there is no clear linear trend, detrending can

Ž .cause the statistics of the periodogram in particular the slope to change
significantly.

3. SYNTHETIC FRACTIONAL NOISES AND MOTIONS

3.1. What Are They?

As discussed above, a Brownian motion has a power-law spectrum such
Ž .that Eq. 39 is applicable with � � 2. We now generate synthetic time

series that have power-law spectra with arbitrary values of �. These are
referred to as fractional noises and motions, which were first introduced by

Ž .Kolmogorov 1940 . Extensive studies of fractional noises and motions
Ž .have been carried out by Mandelbrot and Wallis 1968, 1969a, b, c and by

Ž .Mandelbrot and Van Ness 1968 . A range of applications has been
Ž .discussed by Voss 1985a, b, c, 1986, 1988, 1989 .

3.2. Spectral Analysis

Fractional Gaussian noises can be generated synthetically from Gauss-
ian white noises using the following steps:

Ž .1 A Gaussian white noise sequence is generated. Four examples are
given in Fig. 4a.

Ž . Ž .2 A discrete Fourier transform as given in Eq. 34 is taken of a
Gaussian white noise sequence; the resulting Fourier spectrum will

Ž .be flat, that is, � � 0 in Eq. 42 . Except for the statistical scatter,
� �the amplitudes of the Y will be equal. An example of the powerm

spectrum of a white noise is given in Fig. 9b.
Ž .3 The resulting Fourier coefficients Y are filtered using the relationm

���2m
� Ž .Y � Y . 72m mž /N
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FIG. 9. An example of power-spectral filtering. The Fourier power spectrum of a Gaussian
Ž .white noise with N � 4096 points is given in b . The Fourier coefficients of the spectrum

Ž . Ž . Ž .have been filtered using Eq. 72 to give spectra with � � �1 a and � � 1 c . The
power-spectral density function, S , equal to 2�N multiplied by the square of the amplitudesm
of the complex Fourier coefficients, is given as a function of frequency f � m�N, wherem
m � 1, 2, 3, . . . , N�2. The value for � is the negative of the slope of the best-fit straight linePS
to the circles using a least-squares fit and log�log scales.
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The exponent ��2 is used because the power-spectral density is
proportional to the amplitude squared of the Fourier coefficients.
The amplitudes of the small-m coefficients correspond to short
wavelengths and high frequencies. The large-m coefficients corre-
spond to long wavelengths and low frequencies. Examples for � �
�1 and � � 1 are given in Figs. 9a, c.

Ž . Ž .4 An inverse discrete Fourier transform, Eq. 35 , is taken of the
filtered Fourier coefficients. The result is a fractional Gaussian

Ž .noise. To remove edge effects periodicities , only the central por-
tion is retained.

Using the steps given above, several examples of fractional Gaussian
noises are given in Fig. 10 for � � �1.0, �0.5, 0.5, 1.0. Note that the range
of � ’s corresponding to fractional Gaussian noises is �1 	 � 	 1.

Ž .Just as a Gaussian white noise � � 0 can be summed to give a
Ž .Brownian motion � � 2 , fractional Gaussian noises can be summed to

Ž .give fractional Brownian motions see Section 2.2 . In each case analogous
Ž .to Eq. 50 , � � 2 � � . Fractional Brownian motions are self-affinefBm fGn

fractals and are restricted to the range 1 	 � 	 3 as discussed above. The
Žwhite and fractional Gaussian noises in Fig. 10a � � �1.0, �0.5, 0.0, 0.5,

. Ž .1.0 have been summed using Eq. 17 to give the fractional Brownian
Ž .motions illustrated in Fig. 10b � � 1.0, 1.5, 2.0, 2.5, 3.0 . Each fractional

noise and motion given in Fig. 10 has N � 512 points and has been
Ž . Ž . Ž .rescaled normalized to have zero mean y � 0 and unit variance V � 1 .

The fractional Gaussian noise in Fig. 10a with � � 1.0 is statistically
identical to the fractional Brownian motion in Fig. 10b with � � 1.0.

In Fig. 4a, four white noises were created by randomly choosing values
Ž .from a Gaussian distribution with zero mean y � 0 and unit variance

Ž .V � 1 . Although the distribution from which these white noises were
Ž .derived had a zero mean y � 0 , the white noises have a mean that is

slightly nonzero when taken over the N values. The white noises were
summed to give the Brownian motions illustrated in Fig. 4b. Because the
mean of each white noise is not identically zero, the values at the
beginning and the end of the Brownian motion are not the same, y 	 y .1 N
However, in the fractional noises illustrated in Fig. 10a, each noise has
been forced to have a mean of exactly 0 over the N values in the time
series. Thus, the Brownian motion is now forced to begin and end at
the same value, y � y . In the analyses that will follow, there is little1 N
difference between allowing the beginning and ending points of the
distribution to be the same, or letting them be different. Statistically, the
underlying persistence is the same.

In Fig. 10, as the value of � is increased from �1 to �3, the
Ž .contribution of the high-frequency short-period terms is reduced. With
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Ž . Ž .FIG. 10. a The Fourier coefficients of the white Gaussian noise � � 0 have been
Ž .filtered to give fractional Gaussian noises with � � �1.0, �0.5, 0.5, 1.0. b Each of these

Ž .fractional Gaussian noises with � has been summed using Eq. 17 to give fractionalfGn
Brownian motions with � � 2 � � , � � 1.0, 1.5, 2.0, 2.5, 3.0. Each fractional GaussianfBm fGn
noise and fractional Brownian motion has N � 512 points, and has been rescaled to have

Ž . Ž .zero mean y � 0 and unit variance V � 1 .



SELF-AFFINE TIME SERIES: I 39

� � �1.0 and �0.5, the high-frequency contributions dominate over the
low-frequency contributions. These time series are antipersistent; adjacent

Ž .values are anticorrelated relative to a white noise � � 0 . For an antiper-
sistent time series, a value larger than the mean tends to be followed by a
value smaller than the mean. With � � 0, the high-frequency contribu-
tions are equal to the low-frequency contributions. The result is an
uncorrelated time series; adjacent values have no correlation with one
another.

With � � 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, the low-frequency contributions be-
come increasingly dominant over the high-frequency contributions. The
result is that adjacent values in the time series become more strongly
correlated and profiles are smoothed. The persistence in the time series is
increased. For a persistent time series, a value larger than the mean tends
to be followed by another value larger than the mean. As the persistence
becomes greater, the tendency for large to be followed by large becomes
greater.

As previously discussed in Section 2.4, we use the division between
fractional noises, � � 1, and fractional motions, � � 1, to define weak
persistence as 0 � � � 1 and strong persistence as � � 1. In all cases,

Žhowever, a self-affine time series with a nonzero � has long-range as well
.as short-range persistence and antipersistence. For small � , the correla-

tions with large lag are small but are nonzero. This can be contrasted with
time series that are not self-affine; these may have only short-range

Ž .persistence either strong or weak .
The fractional Gaussian noises with �1 	 � 	 1, generated using the

Fourier filtering technique, can be summed to give fractional Brownian
motions with 1 	 � 	 3. Similarly, the fractional Brownian motions with
1 	 � 	 3 can be differenced to give fractional Gaussian noises with
�1 	 � 	 1. We can repeat the differencing and obtain extended frac-
tional Gaussian noises with �3 	 � 	 �1. Similarly, extended fractional
Brownian motions with 3 	 � 	 5 can be obtained by summing fractional
Brownian motions with 1 	 � 	 3. In this article, we use the Fourier
filtering technique to generate synthetic fractional-noise self-affine time
series, each with N � 4096 points over the range �1 	 � 	 1. These are
extended over the range �3 	 � 	 5 by appropriately differencing and

Ž .summing Table I . We will verify the � ascribed to these self-affine time
series by using power-spectral analysis.

We now illustrate the effects of windowing on power-spectral analysis.
Ž .An example of windowing using the Welch window, Eq. 67 , is given for

two time series; the first, with � � 2.5, is illustrated in Fig. 11a, and the
second, with � � 1.5, is illustrated in Fig. 12a. Each of these two time
series has been rescaled to zero mean and unit variance. For illustration
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TABLE I LEGEND FOR SYMBOLS USED IN FRACTIONAL GAUSSIAN NOISE

AND BROWNIAN MOTION ANALYSES

Symbol represents Which have a
results of analyses range of Beta

Symbol on . . . that is . . . And were created by . . .

� Extended 3 	 � 	 5 Summing the fractional
fractional Brownian motions
motions

� Fractional 1 	 � 	 3 Summing the Fourier filtered
Brownian fractional Gaussian noises
motions

� Fractional �1 	 � 	 1 Filtering the Fourier coefficients
Gaussian of a white noise
noises

� Extended �3 	 � 	 �1 Differencing the Fourier filtered
fractional fractional Gaussian noises
Gaussian
noises

purposes, the values at the beginning and the end of each time series are
not the same, y 	 y . The time series before and after windowing, along1 N
with the Welch window, are shown in Figs. 11a, b for the noise with
� � 2.5 and Figs. 12a, b for � � 1.5. The power-spectral density function

Ž .with and without the Welch window is shown in Figs. 11c, d � � 2.5 and
Ž .Figs. 12c, d � � 1.5 . For the time series with � � 2.5, the best-fit lines

Ž .have slopes resulting in � � 1.9 without windowing Fig. 11c andPS
Ž .� � 2.5 with windowing Fig. 11d . For the time series with � � 1.5, thePS

best-fit lines have slopes resulting in � � 1.5 without windowingPS
Ž . Ž .Fig. 12c and � � 1.5 with windowing Fig. 12d . Windowing clearlyPS
makes a difference for the time series constructed with � � 2.5.

The spectral exponent obtained by power-spectral analysis is denoted
by � . Results of these power-spectral analyses, � vs � , are given inPS PS

Ž .Fig. 13. We have used the Welch window from Eq. 67 . As expected, there
is excellent correlation between � vs � , for � � 4. Since it is rare toPS
find examples of natural self-affine time series with � � 4, the Welch
window is probably fine to use.

In addition to being self-affine time series, the fractional Brownian
Ž .motions given in Fig. 10b with 1 	 � 	 3 have, from Eq. 62 , 1 	 D 	 2;

thus they are self-affine fractals. Although the mathematical definition of
self-affine fractals restricts the applicable range of � to 1 	 � 	 3, natu-
rally occurring self-affine time series with a power-law dependence of the
power-spectral density on frequency have values of � outside this range.
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Ž .FIG. 11. Example of power-spectral density with and without a window. a A fractional
Ž . Ž .Brownian motion y constructed to have � � 2.5 is convolved with the Welch window wn n

Ž . Ž . Ž .given in Eq. 67 , resulting in b the new windowed time series w y . The original discreten n
time series, y , n � 1, 2, 3, . . . , N, was constructed with N � 4096 points, a mean, y � 0, an

Ž .variance, V � 1, and � � 2.5. This same time series is presented later in Fig. 15d. c
Ž .Periodogram of y , where using log�log scales, the power-spectral density, S from Eq. 42 ,n m

is plotted as a function of f , f � 1, 2, 3, . . . , N�2. The value for � is the negative of them m PS
Ž .slope of the best-fit straight line to the circles using a least-squares fit and log�log scales. d

Ž . Ž .Periodogram of the windowed time series, w y , where S from Eq. 71 is now based on an n m
normalization by W , the window squared and summed. The power-spectral analyses for thess
Ž . Ž . Ž .a nonwindowed time series, y , results in c � 
 1.9 and for the b windowed timen PS

Ž .series, w y , results in d � 
 2.5.n n PS
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FIG. 11. Continued.

Ž .In the succeeding article Pelletier and Turcotte, 1999 , power-spectral
analyses have been carried out on a variety of naturally occurring time
series in geophysics. It is found that many of these time series exhibit
self-affine behavior. In some of the time series, a single value of � is
applicable over all frequencies; in other cases, subsets of the frequency
domain are characterized by different values of �. Their article also
includes extensive references to time series analyses of geophysical data
sets.
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FIG. 12. Same as Fig. 11, but for a fractional Brownian motion constructed to have
Ž .� � 1.5. This same time series is presented later in Fig. 15b. For both the a nonwindowed

Ž . Ž . Ž .time series, y , and b windowed time series, w y , power-spectral analysis c and d resultsn n n
in equivalent � 
 1.5.PS

3.3. Method of Successive Random Additions

An alternative method for the direct generation of fractional Brownian
Žmotions is the method of successive random additions Voss 1985a, b,

.1988 . Consider the time interval 0 	 t 	 1 as illustrated in Fig. 14. Then
values of t are discrete, with t � n�N, n � 1, 2, . . . , N. Random valuesn n
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FIG. 12. Continued.

Ž .for y t are generated based on a Gaussian probability distribution with1 n
Ž .zero mean, y � 0, and unit variance, V 1 � 1. Three of these values
1Ž .N � 3, n � 1, 2, 3 are placed at t � 0, , 1 as shown in Fig. 14a. Noten 2

that the mean of these three values is not forced to 0, but rather the
Gaussian distribution from which the three values are randomly chosen
has a mean of 0. Two straight lines are drawn between these three points.
The midpoints of these two line segments are taken as initial values for

1 3Ž .y t at t � and as illustrated in Fig. 14b.2 n n 4 4
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FIG. 13. The dependence of the power-spectral exponent, � , on � for a series ofPS
synthetic fractional Gaussian noises and fractional Brownian motions with N � 4096 points.
The fractional noises and motions are constructed to have a theoretical power-spectral

Ž .exponent, � , using the Fourier filtering technique Section 3.2 . The synthetic noises and
Ž .motions are then windowed using the Welch window, Eq. 67 . Finally, we verify the

power-spectral exponent of each synthetic fractional noise and motion by finding the best fit
�� Ž .of S � f , Eq. 39 , and denoting it by � . Results are given for �3 	 � 	 5; each symbolPS

represents the best-fit � at a given �. The straight-line correlation is � � � . ThePS PS
Ž . Ž . Ž . Ždiamonds �3 	 � 	 �1 , triangles �1 	 � 	 1 , circles 1 	 � 	 3 , and squares 3 	

.� 	 5 are explained in Table I.

The five points are now given random additions. These random addi-
tions are also based on a Gaussian probability distribution with zero mean,

2 H aŽ . Ž . Ž .y � 0, but with a reduced variance given by V T � T , from Eq. 23 .
Since the interval has been reduced by a factor of 2, the variance is given

1 1 1 1 12 H aŽ . Ž . Ž .by V � . For our example, we take Ha � so that V � .2 2 2 2 2

The five resulting random additions are given in Fig. 14c. After addition to
Ž . Ž .the five values of y t in Fig. 14b, the resulting five values for y t aren 2 n

given in Fig. 14d. Again the five points are connected by four straight-line
Ž .segments and the four midpoints are taken as initial values for y t at3 n
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1 3 5 7t � , , , and as illustrated in Fig. 14e. All nine points are now given8 8 8 8

random additions using a Gaussian probability distribution with zero mean
1 1 2 H aŽ . Ž . Ž .but a further reduced variance from Eq. 23 , V � . Again, taking4 4

1 1 1Ž .Ha � gives V � . The nine random additions are given in Fig. 14f.2 4 4
Ž .After addition to the nine values of y t given in Fig. 14e, the resultingn

Ž .nine values for y t are given in Fig. 14g. The process is repeated until3 n
the desired number of points is obtained. A 12th-order construction,

1Ž .y t with 4097 points, is given in Fig. 14h. With Ha � and � � 2, this12 n 2

is a Brownian motion and strongly resembles the Brownian motions given
in Figs. 4 and 10.

A sequence of fractional Brownian motions generated by the method of
successive random additions is given in Fig. 15. Fractional Brownian

Ž . Ž .motions are given for Ha � 0.00 � � 1.0 , Ha � 0.25 � � 1.5 , Ha �
Ž . Ž .0.50 � � 2.0, same as Fig. 14h , Ha � 0.75 � � 2.5 and Ha � 1.00

Ž .� � 3.0 ; in each case 4097 points are given. As expected, these noises
Žclosely resemble those generated by the Fourier filtering technique Fig.

.10 . The method of successive random additions generates fractional
Brownian motions with 1 	 � 	 3. These can be differenced to give
fractional Gaussian noises with �1 	 � 	 1 and summed to give extended
fractional Brownian motions with 3 	 � 	 5.

A detailed comparison of fractional Gaussian noises and fractional
Brownian motions using the Fourier filtering technique and the method of

Ž .successive random additions has been given by Gallant et al. 1994 . These
authors also considered a third method of generating synthetic fractional
noises using Weierstrass�Mandelbrot functions. Other relevant studies

Ž .include those carried out by Li and McLeod 1986 and Osborne and
Ž .Provenzale 1989 .

3.4. Semivariograms

Ž .Using the definition for the semivariogram, � , given in Eq. 8 , semivar-k
iograms for several fractional Gaussian noises and fractional Brownian

FIG. 14. Illustration of the generation of a fractional Brownian motion using the method of
Ž .successive random additions. a Three random numbers are generated using a Gaussian

1 Ž .distribution with zero mean and unit variance; these are placed at t � 0, , 1. b Values at2
1 3 1Ž .t � and are obtained by linear interpolation. c Assuming Ha � , five random numbers4 4 2

1 12 H aŽ . Ž .are generated using a Gaussian distribution with zero mean and V � � . d The2 2
1 3 5 7Ž . Ž . Ž .random numbers in c are added to the values in b . e Values at t � , , , are obtained8 8 8 8

Ž .by linear interpolation. f Nine random numbers are generated using a Gaussian distribution
1 12 H aŽ . Ž . Ž .with zero mean and V � � . g The random numbers in f are added to the values4 4

Ž . Ž .in d . h The construction has been continued to 4097 points; the result is a Brownian
motion.



BRUCE D. MALAMUD AND DONALD L. TURCOTTE48

FIG. 15. A sequence of fractional Brownian motions generated by the method of successive
Ž . Ž . Ž . Ž . Ž . Žrandom additions. a Ha � 0.00 � � 1.0 . b Ha � 0.25 � � 1.5 . c Ha � 0.50 � � 2.0,

. Ž . Ž . Ž . Ž .a Brownian motion same as Fig. 14h . d Ha � 0.75 � � 2.5 . e Ha � 1.00 � � 3.0 .
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FIG. 16. Semivariograms for several fractional Gaussian noises and fractional Brownian
Ž .motions. Each semivariogram is obtained using Eq. 8 with lag k � 4, 8, 16, . . . , 2048, and

applied to fractional Gaussian noises and fractional Brownian motions with N � 4096 points.
Examples of time series with N � 512 points and the same characteristics are illustrated in

2 H a Ž .Fig. 10. The straight-line correlations are with � � k , Eq. 29 . The slope of the best-fit
Ž . Ž .straight line for log � vs log k is 2 Ha. Values for one-half of the slope, Ha, are given for

Ž . Ž . Ž .each of the examples. The triangles � � 0, 1 , circles � � 1, 2, 3 , and squares � � 3 are
explained in Table I.

motions, each with 4096 points, are given in Fig. 16. For the uncorrelated
Ž .Gaussian white noise � � 0 , the semivariogram is about � � 1, thek

same as the variance of the time series, V � 1. For � � 1, 2, and 3,
2 H a Ž .excellent correlations are obtained with � � k , Eq. 29 . For � � 2,k

Ha � 0.47 compared satisfactorily to the expected value Ha � 0.50.
Ž .The values of Ha obtained from the best fit of Eq. 29 to the semivari-

ograms in the range �1 	 � 	 5 are given in Fig. 17. The straight-line
Ž .correlation is with the self-affine fractal relation � � 2 Ha � 1, Eq. 62 .
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FIG. 17. The dependence of the Hausdorff exponent, Ha, on � , for fractional Gaussian
noises and fractional Brownian motions with N � 4096 points. The values for Ha have been

2 H a Ž .obtained from the best fit of � � k , Eq. 29 . Results are given for �1 	 � 	 5; each
symbol represents the best fit for Ha at that �. Examples of obtaining Ha from semivari-
ograms are given in Fig. 16. The straight-line correlation is with the self-affine fractal relation

Ž . Ž . Ž .� � 2 Ha � 1, Eq. 62 , for 1 	 � 	 3. The triangles �1 	 � 	 1 , circles 1 	 � 	 3 , and
Ž .squares 3 	 � 	 5 are explained in Table I.

Quite good agreement is found in the range 1 	 � 	 3, where the frac-
tional Brownian motions are expected to be self-affine fractals.

From Fig. 17, it is seen that Ha 
 0 for fractional Gaussian noises in the
Ž . H arange �1 	 � 	 1. From Eq. 20 , 	 � n , one can conclude that, inn

this range of � , the standard deviation, 	 , and thus the variance, V , aren n
independent of the length of the signal, n. Therefore, these fractional

Ž .noises are weakly stationary even though adjacent values may be corre-
lated or anticorrelated. For these fractional noises, each with variance
V � 1, and in the range �1 	 � 	 1, the semivariogram has a value of

Ž .� 
 1. For fractional Gaussian noises �1 	 � 	 1 , semivariograms arek
not a measure of persistence or antipersistence strength in a self-affine
time series. We note that theoretically this result might appear to be

Ž . Ž .inconsistent with Eq. 12 , where the semivariogram is � � V � c . Thek n k
Ž .only case where the autocovariance c � 0 is for a white noise � � 0k

and k 	 0. However, for �1 � � � 1 and at large k, the autocovariance
c 
 0, giving the result that � 
 V .k k n

For the fractional Brownian motions in the range 1 	 � 	 3, Ha varies
Ž . H afrom 0 to 1. From Eq. 20 , 	 � n , we conclude that the standardn
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deviation, 	 , and thus the variance, V , both have a power-law depen-n n
dence on the length of the signal n. Therefore, these fractional Brownian
motions are clearly nonstationary.

4. LOG-NORMAL NOISES AND MOTIONS

4.1. Log-Normal Distributions

The fractional Gaussian noises and fractional Brownian motions we
Ž .have considered have been based on a Gaussian normal frequency�size

distribution of values; therefore, the resulting time series have both
positive and negative values. The standard form of a Gaussian distribution
is obtained by taking y � 0 and 	 � 1. All Gaussian distributions can bey
rescaled to the normalized standard form using linear transformations.
The value of � completely specifies a normalized fractional Gaussian
noise or fractional Brownian motion.

However, many naturally occurring time series have only positive values.
Ž .For example, the volumetric flow in a river, Q t , is always positive as

illustrated in Fig. 1b. One of the most widely used positive distributions is
the log-normal distribution. A normal distribution can be converted to a
log-normal distribution using the relation

Ž . yŽ t . Ž .x t � e , 73

Ž . Ž .where x t has a log-normal distribution of values and y t has a normal
distribution of values. In order to specify a log-normal distribution, it is
necessary to specify the mean of the distribution, x, and its coefficient of
variation, c , which is the ratio of the standard deviation of the log-normalv
distribution to its nonzero mean:

	x Ž .c � . 74v x

The coefficient of variation, c , is a measure of the relative dispersion of av
time series; the standard deviation is a measure of the absolute dispersion.
If c � 1, it may be appropriate to consider a Gaussian distribution. Inv
many cases, however, this will be a poor approximation.

Although normal distributions have a universal form, i.e., zero mean
Ž . Ž .y � 0 and unit variance V � 1 , this is not the case for the log-normal
distribution; no standard form exists. The coefficient of variation, c ,v
classifies a family of log-normal distributions. The probability distribution

Ž .functions, f x , for the log-normal distribution are given in Fig. 18 for
x � 1 and c � 0.25, 0.50, 1.00. It is seen that the shape of the log-normalv
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Ž .FIG. 18. The probability distribution function f x for the log-normal distribution with unit
Ž .mean x � 1 and several values of the coefficient of variation, c � 0.25, 0.50, 1.00.v

distribution changes systematically for different c . As the value of cv v
Ž .becomes smaller, the distribution narrows and the maximum value for f x

occurs at a value of x approaching 1. In the limit c � 0, the distributionv
is a delta function centered at x � 1. As c becomes larger, the distribu-v

Ž .tion spreads out and the maximum value for f x occurs at smaller x. The
distribution of log-normal values has an asymmetric tail extending toward
values that are more positive. Whereas the normal distribution is symmet-
ric, the asymmetry for the log-normal distribution increases with increasing
coefficient of variation, c . As an example of a time series with anv
approximately log-normal distribution, Fig. 1b is a plot of daily river
discharges for T � 75 years from the Salt River in Arizona, with a
coefficient of variation, c � 2.6.v

Log-normal distributions are a one-parameter family of distributions
depending on the appropriate value of c . This has important implicationsv
in terms of applications. It is often appropriate to approximate the distri-
bution of annual rainfalls at a station by a log-normal distribution. A
maritime station, for instance Seattle, would have little year-to-year varia-
tion in rainfall and a small value for c . On the other hand, an arid station,v



SELF-AFFINE TIME SERIES: I 53

for instance Phoenix, would have large year-to-year variations in rainfall
and a large value for c .v

4.2. Fractional Log-Normal Noises and Motions

A Gaussian white-noise sequence can be converted to a log-normal,
Ž .white-noise sequence using Eq. 73 along with

1�22Ž . Ž .	 � ln 1 � c , 75y v

x
Ž .y � ln , 761�22Ž .1 � cv

where x is the mean of the log-normal distribution, and y and 	 are they
mean and standard deviation of the normal distribution. Log-normal

Ž . Ž .white-noise sequences � � 0 with unit mean x � 1 are given in Fig. 19
for c � 0.2, 0.5, 1.0, 2.0. With c � 0.2, the standard deviation is smallv v
compared with the mean, the distribution is nearly symmetric, and it
closely resembles a Gaussian white noise. With c � 2, the variance isv
large compared with the mean and the distribution is strongly asym-
metrical.

Just as a Gaussian white-noise sequence can be converted to a log-normal
white-noise sequence, so too can fractional Gaussian noises and fractional
Brownian motions be converted to fractional log-normal noises and mo-

Ž . Ž .tions using Eqs. 73 to 76 . Several examples are given in Fig. 19. In each
Ž .case the mean is unity x � 1 . This is a two-parameter family of noises

and motions. The values of � are a measure of the persistence of the time
series. The values of c are a measure of the asymmetry of the distributionv
of values. Extensive studies of fractional log-normal noises and motions

Ž .have been given by Mandelbrot and Wallis 1969a . These authors referred
to the dependence on c as the Noah effect and the dependence on � asv
the Joseph effect. The different time series in Fig. 19 resemble typical river
flow time series. Increasing c , the Noah effect, is indicative of a climatev
where there is large variability in river flow. Increasing � , the Joseph
effect, is indicative of more strongly correlated values. With higher values
of � , a year of flood is more likely to follow a previous year of flood, and a
year of drought is more likely to follow a previous year of drought.

4.3. Spectral Analysis

In Section 3.2 we used the Fourier spectral filtering method to create
Ž .fractional Gaussian noises and motions with �3 	 � 	 5. Using Eqs. 73
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FIG. 19. Examples of fractional log-normal noises and motions with N � 512 points. In
each case a fractional Gaussian noise or a fractional Brownian motion has been converted to
a fractional log-normal noise or motion; examples are given for � � 0, 1, 2. The conversions

Ž . Ž . Ž . Ž . Ž .were made using Eqs. 73 to 76 . Examples are given for a c � 0.2, b c � 0.5, cv v
Ž . Ž .c � 1.0, and d c � 2.0. In all cases the mean of the series is unity x � 1 .v v
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Ž .to 76 , each of the fractional Gaussian noises and motions has been
converted to its log-normal equivalent with three different coefficients of
variation, c � 0.2, 0.5, 1.0, N � 4096 points, and � ranging over �3 	v
� 	 5. Table II provides a legend for symbols that are used in the log-
normal noise and motion analyses that follow in subsequent portions of
this article.

We verify the � ascribed to the log-normal self-affine time series by
using Fourier power-spectral analysis. The resulting spectral exponent is
again denoted by � . Before doing a spectral analysis, each of thePS
log-normal time series is first rescaled to zero mean and then multiplied by

Ž .the Welch window, Eq. 67 . Results of these power-spectral analyses, �PS
vs � , are given in Fig. 20. For log-normal time series, there is excellent
correlation between � vs � , for 0 � � � 4. For � � 0 and � � 4, thePS
correlation is poor.

Ž .A recommended technique e.g., Hewett, 1986 is to convert the values
of a non-Gaussian distribution to those of a Gaussian distribution. How-
ever, we recommend that this only be used if the resulting � from Fourier
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FIG. 20. The dependence of the power-spectral exponent, � , on � , for syntheticPS
fractional log-normal noises and motions with N � 4096 points. The fractional log-normal
noises and motions were each constructed to have a theoretical power-spectral exponent, � ,

Ž . Ž .by using Eqs. 73 to 76 applied to fractional Gaussian noises and motions. The synthetic
Ž .noises and motions are windowed using the Welch window, Eq. 67 . We then verify the

power-spectral exponent of each synthetic fractional log-normal noise and motion by finding
�� Ž .the best fit of S � f , Eq. 39 , and denoting it by � . Results are given for �1 	 � 	 5PS

Ž . Ž . Ž .and c � 0.2 white , 0.5 gray , and 1.0 black ; each symbol represents the best fit for � atv PS
Ž .that �. The straight-line correlation is with � � � . The diamonds �3 	 � 	 �1 ,PS

Ž . Ž . Ž .triangles �1 	 � 	 1 , circles 1 	 � 	 3 , and squares 3 	 � 	 5 are explained in
Table II.

power-spectral analysis is less than 0. In this case, we do recommend that
the series be converted to their normal equivalent before performing a
discrete Fourier transform.

4.4. Semivariograms

Ž .Using the definition for the semivariogram, � , given in Eq. 8 , semivar-k
iograms for several fractional log-normal noises and motions, each with
4096 points and c � 0.5, are given in Fig. 21. The results are generallyv



SELF-AFFINE TIME SERIES: I 57

FIG. 21. Semivariograms for several fractional log-normal noises and motions with c � 0.5.v
Ž .Each semivariogram is obtained using Eq. 8 with lag k � 4, 8, 16, . . . , 2048, and applied to

fractional log-normal noises and motions with N � 4096 points. Examples of time series with
N � 512 points and the same characteristics are illustrated in Fig. 19. The straight-line

2 H a Ž . Ž .correlations are with � � k , Eq. 29 . The slope of the best-fit straight line for log � vs
Ž .log k is 2 Ha. Values for one-half of the slope, Ha, are given for each of the examples. The

Ž . Ž .fractional log-normal noises and motions were each obtained by using Eqs. 73 to 76
applied to fractional Gaussian noises and motions, and letting c � 0.5. The trianglesv
Ž . Ž . Ž .� � 0, 1 , circles � � 1, 2, 3 , and squares � � 3 are explained in Table II.

similar to those obtained for fractional Gaussian noises and fractional
Brownian motions given in Fig. 16. For � � 1, 2, 3, excellent correlations

2 H a Ž .are obtained with � � k , Eq. 29 .k
Ž .The values of Ha obtained from the best fit of Eq. 29 to the semivari-

ograms in the range �1 	 � 	 5 are given in Fig. 22. Results are given for
Ž .c � 0.2, 0.5 illustrated in Fig. 21 , and 1.0. The straight-line correlation isv
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FIG. 22. The dependence of the Hausdorff exponent, Ha, on � , for fractional log-normal
noises and motions with N � 4096 points. The values for Ha have been obtained from the

2 H a Ž . Ž .best fit of � � k , Eq. 29 . Results are given for �1 	 � 	 5 and c � 0.2 white , 0.5v
Ž . Ž .gray , and 1.0 black ; each symbol represents the best fit for Ha at that �. Examples of
obtaining Ha from semivariograms are given in Fig. 21. The straight-line correlation is with

Ž . Žthe self-affine fractal relation � � 2 Ha � 1, Eq. 62 , for 1 	 � 	 3. The triangles �1 	
. Ž . Ž .� 	 1 , circles 1 	 � 	 3 , and squares 3 	 � 	 5 are explained in Table II.

Ž .with the self-affine fractal relation, � � 2 Ha � 1, Eq. 62 . The results
are, again, very similar to those obtained for fractional Gaussian noises
and fractional Brownian motions, given in Fig. 17. Again, good agreement

Ž .with � � 2 Ha � 1, Eq. 62 , is found in the range 1 	 � 	 3, where the
fractional motions are expected to be self-affine fractals. We can conclude
that semivariograms are very good at quantifying the strength of persis-
tence for nonstationary self-affine time series with 1 	 � 	 3, both for
Gaussian and log-normal distributions.

Ž .5. RESCALED-RANGE R�S ANALYSIS

5.1. The Method

An alternative approach to the quantification of correlations in time
Ž .series was developed by Harold E. Hurst Hurst, 1951; Hurst et al., 1965 .
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Ž .FIG. 23. Illustration of how rescaled-range R�S analysis is carried out. The flow into a
Ž . Ž .reservoir is Q t and the average flow out is Q T , where 0 	 t 	 T. The maximum volume

Ž . Ž .of water in the reservoir during the period T is V T and the minimum is V T ; themax min
Ž . Ž . Ž .difference is the range R T � V T � V T .max min

Hurst spent his life studying the hydrology of the Nile River, in particular
the record of floods and droughts. He considered a river flow as a time
series and determined the storage limits in an idealized reservoir. Based
on these studies, he introduced empirically the concept of rescaled-range
Ž .R�S analysis. His method is illustrated in Fig. 23. Consider a reservoir
behind a dam that never overflows or empties; the flow into the reservoir is

Ž .the flow in the river upstream of the dam, Q t . The flow out of the
Ž .reservoir, Q T , is assumed to be the mean of the flow into the reservoir

over a period T :

1 TŽ . Ž . Ž .Q T � Q t dt. 77HT 0

Ž .The volume of water in the reservoir as a function of time, V t , is given by

t � �Ž . Ž . Ž . Ž . Ž .V t � V 0 � Q t dt � tQ T , 78Hž /0

Ž .where V 0 is the volume of water at t � 0. Taking t � T and substituting
Ž . Ž . Ž . Ž .Eq. 77 into Eq. 78 , we have V T � V 0 ; in other words, the volume in

Ž .the reservoir is the same at t � 0 and t � T. The range R T is defined to
be the difference between the maximum volume of water V and themax

minimum volume of water V during the period T :min

Ž . Ž . Ž . Ž .R T � V T � V T . 79max min
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Ž . Ž . Ž .The rescaled range is defined to be R T �S T , where S T is the
Ž .standard deviation of the flow Q t during the period T :

1�21 T 2� �Ž . � Ž . Ž .4 Ž .S T � Q t � Q T dt . 80HT 0

Ž .This is identical to the definition of the standard deviation, 	 T . We use
S here to maintain the standard R�S nomenclature. The period T can be
broken up into subintervals 
 , for instance 
 � T�2, T�4, T�8, and so

Ž . Ž .forth. For a given value of 
 , R 
 and S 
 are calculated for each of the
Ž . Ž .T�
 subdivisions, by substituting 
 for T in Eqs. 79 and 80 . The T�


Ž . Ž .individual values for R 
 �S 
 are then averaged.
Ž . Ž .Hurst 1951 and Hurst et al. 1965 found empirically that many data

sets in nature satisfy the power-law relation

H uŽ .R 
 

Ž .� , 81ž /Ž .S 
 2

av

Ž . Ž .where Hu is known as the Hurst exponent. For 
 � 2, R 
 �S 
 � 1 by
definition. Examples included river discharges, lake levels, tree ring thick-
nesses, varve thicknesses, sunspot numbers, and atmospheric temperature
and pressure. They generally found that 0.70 � Hu � 0.80. Hurst’s data
sets are included in the McLeod�Hipel Time-Series Datasets Collection
Ž .McLeod and Hipel, 1995 , which contains over 300 time series in elec-
tronic format and is available over the Internet.

The R�S analysis is easily extended to a discrete time series, y ,n
n � 1, 2, 3, . . . , N. The running sum, y , of the time series, y , relative tom n
its mean is

m m

Ž . Ž .y � y � y � y � my . 82Ý Ým n N n Nž /
n�1 n�1

The range is defined by

Ž . Ž . Ž .R � y � y 83N m mmax min

with

Ž .S � 	 , 84N N

where y and 	 are the mean and standard deviation of all N values inN N
Ž . Ž . Ž .the time series, y . From Eqs. 82 to 84 , we have a value of R �S forn N N

the time series, y , n � 1, 2, 3, . . . , N. Since we are interested in hown
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Ž .R�S varies with successive subintervals 
 of N, we substitute 
 for N in
Ž . Ž .Eqs. 82 to 84 . The Hurst exponent, Hu, is obtained from

H uR 

 Ž .� . 85ž /ž /S 2
 av

For example, if 64 values of y are available for a time series, the R andn N
S for N � 64 are obtained. Then the data are broken into two parts, eachN

Ž .with 
 � 32 1, 2, . . . , 32 and 33, 34, . . . , 64 . The values for R and S are32 32
obtained for the two parts. The two values of R �S are then averaged32 32

Ž .to give R �S . The data set is then broken into four parts, each with32 32 av
Ž .
 � 16 1, 2, . . . , 16; 17, 18, . . . , 32; 33, 34, . . . , 48; and 49, 50, . . . , 64 . The

values for R �S are obtained for the four parts and are averaged to16 16
Ž .give R �S . This process is continued for 
 � 8 and 
 � 4 to16 16 av
Ž . Ž .give R �S and R �S . For 
 � 2, the value for R � S so that8 8 av 4 4 av 2 2

Ž . Ž .R �S � 1. The values of log R �S are plotted against log 
�2 and2 2 
 
 av
Ž .the best-fit straight line gives Hu from Eq. 85 . In practice, there is

Ž .generally some curvature of R �S for small values of 
�2 and they are
 
 av
Ž .therefore omitted Tapiero and Vallois, 1996 .

Ž .The running sum of a Gaussian white noise � � 0 is a Brownian
Ž .motion � � 2 and Ha � 0.5. This would imply that

Ž .� � 2 Hu � 1. 86

Ž .From Eq. 62 we have � � 2 Ha � 1, giving

Ž . Ž . Ž .Hu � � 2 � Ha � . 87

Ž .Since a white noise � � 0 is a random process that has adjacent values
which are uncorrelated, it is appropriate to conclude that Hu � 0.5
implies a time series that is uncorrelated. It follows that 0.5 � Hu 	 1.0
implies persistence and that 0 	 Hu � 0.5 implies antipersistence.

It should be noted that not all authors use the running sum when
applying the rescaled-range method. The technique can be applied directly

Ž .to the specified time series, i.e., substituting y for y in Eq. 83 . If this isn m
Ž .done, the resulting Hurst exponent from Eq. 85 varies from 0 to 1 when

Ž� is in the range 1 to 3; i.e., the results in Fig. 25 discussed in the next
.section will be shifted by � � 2. Care should be taken to specify which

version of rescaled range is being used, as there is currently some confu-
sion in the literature. In this article, we will use the running sum as given

Ž .in Eq. 82 when applying rescaled range to a discrete time series.
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5.2. Applications to Fractional Gaussian Noises and Motions

The Hurst rescaled-range analysis was first applied to fractional Gauss-
ian noises and fractional Brownian motions by Mandelbrot and Wallis
Ž . Ž . Ž .1969c . The dependence of log R�S on log 
�2 for several fractionalav
noises and motions with 4096 points, similar to those illustrated in Fig. 10,
are given in Fig. 24. For � � 0, 1, and 2, excellent correlations with the

Ž .FIG. 24. Hurst rescaled-range R�S analyses for several fractional Gaussian noises and
fractional Brownian motions with N � 4096 points. Average values of R�S are given as a
function of the interval 
�2 for 
 � 4, 8, 16, . . . , 4096, where R and S are calculated using

Ž . Ž .Eqs. 82 to 84 . Examples of time series with N � 512 points and the same characteristics as
the noises and motions with 4096 points are illustrated in Fig. 10. The straight-line correla-

Ž . Ž .H u Ž .tions are with R�S � 
�2 , Eq. 85 . The slope of the best-fit straight line forav
Ž . Ž .log R�S vs log 
�2 is Hu. Values for Hu are given for each of the examples. Theav

Ž . Ž . Ž .diamonds � � �1 , triangles � � �1, 0, 1 , and circles � � 1, 2 are explained in Table I.
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FIG. 25. The dependence of the Hurst exponent, Hu, on � , for fractional Gaussian noises
and fractional Brownian motions with N � 4096 points. The values for Hu have been

Ž . Ž .H u Ž .obtained from the best fit of R�S � 
�2 , Eq. 85 . Results are given for �3 	 � 	 3;av
each symbol represents the best fit for Hu at that �. Examples of obtaining Hu from

Ž .rescaled-range R�S analyses are given in Fig. 24. The straight-line correlation is with the
Ž . Ž .relation � � 2 Hu � 1, Eq. 86 , for �1 	 � 	 �3. The diamonds �3 	 � 	 �1 , trian-

Ž . Ž .gles �1 	 � 	 1 , and circles 1 	 � 	 3 are explained in Table I.

Ž . Ž .H u Ž .Hurst relation, R�S � 
�2 , Eq. 85 , are obtained. For � � 0, weav
find Hu � 0.56 compared with the expected value of 0.5 for the uncorre-
lated white Gaussian noise.

The values of Hu obtained for the best fit to the Hurst relation, Eq.
Ž .85 , in the range �3 	 � 	 3 are given in Fig. 25. The straight-line

Ž .correlation is with � � 2 Hu � 1, Eq. 86 . Reasonably good agreement is
found in the range �1 	 � 	 1; however, for � � 0, Hu definitely begins
to deviate from the straight-line correlation. The Hurst exponent provides
a quantitative measure of the strength of persistence and antipersistence

Ž .for fractional Gaussian noises �1 	 � 	 1 , but the only place it is
Ž .exactly correlated with � � 2 Hu � 1, Eq. 86 , is at Hu � 0.7. Extensive

R�S analyses of fractional Gaussian noises and fractional Brownian mo-
Ž .tions have been carried out by Bassingthwaighte and Raymond 1994 .

They found, when using synthetic self-affine noises and motions con-
structed to have certain values of � , that Hu converges very slowly to the

Ž .expected value of � � 2 Hu � 1, Eq. 86 , for large sample sizes, N. For
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values of N � 4096, we have found that Hu gets steadily worse, with
Hu � 0.5 when � � 0.

5.3. Applications to Fractional Log-Normal Noises and Motions

In Fig. 26, we apply rescaled-range analysis to several fractional log-
normal noises and motions with N � 4096 points and c � 0.5. Log-v
normal noises and motions similar to these are given in Fig. 19. The val-
ues for Hu, the Hurst exponent, have been obtained from the best fit of
Ž . Ž .H u Ž .R�S � 
�2 , Eq. 85 . We find good correlations for � � �1, 0, 1,av
and 2.

Ž .The values of Hu obtained for the best fit to Eq. 85 in the range
Ž .�3 	 � 	 3 with c � 0.2, 0.5 illustrated in Fig. 26 , and 1.0 are given inv

Ž .Fig. 27. The straight-line correlation is with � � 2 Hu � 1, Eq. 86 . The
agreement obtained for c � 0.2 is similar to that found in Fig. 25, wherev
the same analyses have been applied to fractional Gaussian noises and
motions. For c � 0.5 and 1.0, the asymptotic values for negative � ’sv
become systematically higher. For log-normal noises with � � 0, values for
Hu are clearly biased towards higher and higher values as c increases.v

We recommend that if rescaled range is to be used, then the non-
ŽGaussian distribution should first be converted Hewett, 1986; Press et al.,

.1994 to its Gaussian equivalent. However, even for a Gaussian distribu-
tion, the Hurst rescaled-range analysis is a poor estimator of the strength
of antipersistence. Rescaled-range analysis has also been applied to frac-

Ž .tional log-normal noises and motions by Mandelbrot and Wallis 1969c .

6. AVERAGE EXTREME-VALUE ANALYSIS

6.1. The Method

For many time series, the primary goal is to understand the frequency�
size distribution of the extreme values. An example is a river discharge
time series. The extreme values of this time series are floods. Flood hazard
assessments require statistical estimators of these extreme values.

For a Gaussian white noise, the frequency�size distribution of the
extreme values are clearly Gaussian. However, what about fractional
noises and motions? In order to specify the extreme values of a time series
we consider average extreme-value analysis. Taking a synthetic time series
of length N, we first force the time series to have a mean of 0 by
subtracting y , the mean of the data series taken over N, from eachN
successive value in the time series. We still use y , n � 1, 2, 3, . . . , N, ton
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Ž .FIG. 26. Hurst rescaled-range R�S analyses for several fractional log-normal noises and
motions with N � 4096 points and c � 0.5. Average values of R�S are given as a functionv

Ž .of the interval 
�2 for 
 � 4, 8, 16, . . . , 4096, where R and S are calculated using Eqs. 82 to
Ž . Ž .84 . The fractional log-normal noises and motions were each obtained by using Eqs. 73 to
Ž .76 applied to fractional Gaussian noises and motions, and letting c � 0.5. Examples ofv
time series with N � 512 points and the same characteristics are illustrated in Fig. 19. The

Ž . Ž .H u Ž .straight-line correlations are with R�S � 
�2 , Eq. 85 . The slope of the best-fitav
Ž . Ž .straight line for log R�S vs log 
�2 is Hu. Values for Hu are given for each of theav

Ž . Ž . Ž .examples. The diamonds � � �1 , triangles � � �1, 0, 1 , and circles � � 1, 2 are
explained in Table II.

represent the time series with zero mean. The maximum value of y overn

the N points, y , is assigned a period 
 � N. The period is then brokene
into two parts each of length N�2 and the maximum value for each part is

Ž .found. The average, y , of the two values y is assigned the periode av e

 � N�2. The process is repeated for 
 � N�4, N�8, N�16, . . . . To deter-
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FIG. 27. The dependence of the Hurst exponent, Hu, on � , for fractional log-normal
noises and motions with N � 4096 points. The values for Hu have been obtained from the

Ž . Ž .H u Ž .best fit of R�S � 
�2 , Eq. 85 . Results are given for �3 	 � 	 3 and c � 0.2av v
Ž . Ž . Ž .white , 0.5 gray , and 1.0 black ; each symbol represents the best fit for Hu at that �.

Ž .Examples of obtaining Hu from rescaled-range R�S analyses are given in Fig. 26. The
Ž .straight-line correlation is with the relation � � 2 Hu � 1, Eq. 86 , for �1 	 � 	 �3. The

Ž . Ž . Ž .diamonds �3 	 � 	 �1 , triangles �1 	 � 	 1 , and circles 1 	 � 	 3 are explained in
Table II.

mine whether the extreme values have a power-law dependence on the
length of time considered, we correlate the results with

Ž . H e Ž .y � 
 , 88e av

where He is the extreme-value exponent. Consider the relation

Ž .� � 2 He � 1, 89

Ž .which is analogous to � � 2 Ha � 1, Eq. 62 , where Ha is the Hausdorff
exponent.

6.2. Applications to Fractional Gaussian Noises and Motions

We have applied average extreme-value analyses to several fractional
noises and motions with 4096 points, similar to those noises illustrated in
Fig. 10. The results are given in Fig. 28 for � � 0, 1, 2, 3. Good correlations

Ž .with Eq. 88 are found. The values of He obtained from the best fit of
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FIG. 28. Average extreme-value analyses for several fractional Gaussian noises and frac-
tional Brownian motions with N � 4096 points. Examples of time series with N � 512 points
and the same characteristics as the noises and motions we use here are illustrated in Fig. 10.
The time series is forced to have a mean of 0. Average values of the extreme values in each

Ž .interval, y , are given as a function of the interval 
 for 
 � 8, 16, 32, . . . , 4096. Thee av
Ž . H e Ž .straight-line correlations are with y � 
 , Eq. 88 . The slope of the best-fit straight linee av

Ž . Ž .for log y vs log 
 is He. Values for He are given for each of the examples. The trianglese av
Ž . Ž . Ž .� � 0, 1 , circles � � 1, 2, 3 , and squares � � 3 are explained in Table I.

Ž .Eq. 88 in the range �1 	 � 	 5 are given in Fig. 29. The straight-line
Ž .correlation is with � � 2 Ha � 1, Eq. 89 . Reasonably good agreement is

found in the range 1 	 � 	 3, where the fractional Brownian motions are
expected to be self-affine fractals; however, for � � 2, He becomes more

Ž .positive than the straight-line fit given by Eq. 89 . More interestingly, for
the fractional Gaussian noises and fractional Brownian motions, the ex-
treme-value behavior illustrated in Fig. 29 is essentially identical to the
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FIG. 29. The dependence of the extreme-value exponent, He, on � , for fractional Gaussian
noises and fractional Brownian motions with N � 4096 points. The values for He have been

Ž . H e Ž .obtained from the best fit of y � 
 , Eq. 88 . Results are given for �1 	 � 	 5; eache av
symbol represents the best fit for He at that �. Examples of obtaining He from average
extreme-value analysis are given in Fig. 28. The straight-line correlation is with the relation

Ž . Ž . Ž .� � 2 He � 1, Eq. 89 , for 1 	 � 	 3. The triangles �1 	 � 	 1 , circles 1 	 � 	 3 , and
Ž .squares 3 	 � 	 5 are explained in Table I.

rescaled-range analysis behavior illustrated in Fig. 25, with each point in
the figure shifted by a � of 2:

Ž . Ž . Ž .Hu � � He � � 2 . 90

The two techniques result in an identical pattern of values for Hu and He,
except that rescaled-range analysis measures the strength of persistence
Ž . Ž .and antipersistence for fractional Gaussian noises �1 	 � 	 1 , and
average extreme-value analysis measures the strength of persistence for

Ž . Ž .fractional Brownian motions 1 	 � 	 3 . The effect of Eq. 82 is to take
the running sum of y , which results in the time series being shifted by a �n
of 2. This is similar to shifting � by 2 when summing a white noise to

Ž . Ž .construct a Brownian motion. The range, R 
 , from Eq. 83 is then
similar to taking the maximum value, y , in each subperiod, 
 .e

The fractional Gaussian noises and fractional Brownian motions illus-
trated in Fig. 10 have both positive maximum values, y , and negativemax
minimum values, y . The average extreme-value analysis just presentedmin
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FIG. 30. Average extreme-value analyses for several fractional log-normal noises and
motions with N � 4096 points and c � 0.5. The fractional log-normal noises and motionsv

Ž . Ž .were obtained by using Eqs. 73 to 76 applied to fractional Gaussian noises and motions,
and letting c � 0.5. Examples of time series with 512 points and the same characteristics arev
illustrated in Fig. 19. The time series is forced to have a mean of 0. Average values of the

Ž .extreme values in each interval, y , are given as a function of the interval 
 fore av
Ž . H e Ž .
 � 8, 16, 32, . . . , 4096. The straight-line correlations are with y � 
 , Eq. 88 . Thee av

Ž . Ž .slope of the best-fit straight line for log y vs log 
 is He. Values for He are given for eache av
Ž . Ž . Ž .of the examples. The triangles � � 0, 1 , circles � � 1, 2, 3 , and squares � � 3 are

explained in Table II.

was on the most positive maximum values, y , for fractional noises andmax
motions y , n � 1, 2, 3, . . . , N, with N � 4096 points and �1 	 � 	 5. Wen
have also applied average extreme-value analysis to the most negative
values, y , obtained by taking the negative of the fractional noise timemin
series. The results were essentially the same.
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FIG. 31. The dependence of the extreme-value exponent, He, on � , for fractional log-normal
noises and motions with N � 4096 points. The values for He have been obtained from the

Ž . H e Ž . Ž .best fit of y � 
 , Eq. 88 . Results are given for �1 	 � 	 5 and c � 0.2 white , 0.5e av v
Ž . Ž .gray , and 1.0 black ; each symbol represents the best fit for He at that �. Examples of
obtaining He from average extreme-value analysis are given in Fig. 30. The straight-line

Ž . Žcorrelation is with the relation � � 2 He � 1, Eq. 89 , for 1 	 � 	 3. The triangles �1 	 �
. Ž . Ž .	 1 , circles 1 	 � 	 3 , and squares 3 	 � 	 5 are explained in Table II.

6.3. Applications to Fractional Log-Normal Noises and Motions

Average extreme-value analysis has been applied to several fractional
log-normal noises and motions, each with 4096 points, similar to those
illustrated in Fig. 19. Results for c � 0.5 and � � 0, 1, 2, 3 are given inv

Ž . H e Ž .Fig. 30. In general, the correlations with y � 
 , Eq. 88 , are quitee av
Ž .good. The values of He obtained from the best fit of Eq. 88 in the range

Ž .�1 	 � 	 5 and c � 0.2, 0.5 illustrated in Fig. 30 , and 1.0 are given inv
Ž .Fig. 31. The straight-line correlation is with � � 2 He � 1, Eq. 89 . As

expected, the results for the fractional log-normal noises and motions with
Ž .a low coefficient of variation, c � 0.2 Fig. 31 , are very similar to thev

fractional Gaussian noises and motions in Fig. 29. Reasonably good
agreement is found in the range 1 	 � 	 3, where the fractional Brownian
motions are expected to be self-affine fractals. For � � 2, He becomes

Ž .increasingly more positive than the straight-line fit given by Eq. 89 .
As the coefficient of variation becomes greater, c � 0.5 and c � 1.0v v
Ž .Fig. 31 , He deviates farther away from the straight-line fit given by



SELF-AFFINE TIME SERIES: I 71

Ž .� � 2 He � 1, Eq. 89 . This is very similar to the behavior seen in Fig. 27
for the results of rescaled-range analysis applied to fractional log-normal

Žnoises and motions. Rescaled-range analysis exhibits an increasing Hu for
.� � 0 as a function of an increasing coefficient of variation, c ; similarly,v

Ž .average extreme-value analysis exhibits an increasing He for � � 2 as a
function of increasing c .v

7. WAVELET ANALYSIS

7.1. The Method

Fourier transforms have a long history of applications to a wide variety
of problems. For example, they have great utility in terms of obtaining the
frequency content of a time series. Despite the many advantages of
Fourier transforms, there are also disadvantages. For instance, they do not
provide spatial resolution. To overcome some of these disadvantages,

Ž .Grossmann and Morlet 1984 introduced the wavelet transform. This
transform provides information on both the spatial and frequency depen-
dence of a time series. The transform has a fractal basis and is particularly
useful when applied to nonperiodic multiscaled time series. The method
can also be applied to nonstationary processes. Two excellent discussions

Ž . Ž .of the wavelet transform are given by Hubbard 1996 and Wornell 1996 .
Ž .Hubbard 1996 is particularly useful because she provides a complete

history of wavelets, along with a very easy to understand introduction to
wavelet mathematics.

�Ž � . �The wavelet transform is a filter g t � t �a which is passed over a
Ž � .time series f t . The effective width of the filter is generally increased by

powers of 2. The generalized form of the wavelet transform is given by

�
�1 t � t

� �Ž . Ž . Ž .W t , a � g f t dt . 91H1�2 ž /aa ��

The filter is centered at t, the position parameter, with a the scale
parameter. The effective width of the filter is normally taken to be a

Ž �.constant multiple of the scale parameter. The quantity g t is known as
the ‘‘mother wavelet.’’ Other wavelets are rescaled versions of the mother

0.5 Ž .wavelet. The factor a in Eq. 91 is an energy normalization so that the
transformed signal will have the same energy at all scales. The area of
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each wavelet must sum to zero so that
�

� �Ž . Ž .g t dt � 0. 92H
��

When a is increased by powers of 2, a suite of wavelets is generated that
Ž �.can accommodate a wide range of scales in the signal f t . Small values of

the scale parameter a are equivalent to examining the high-frequency
contributions to a time series; large values of a are equivalent to examin-
ing low frequencies.

Ž .A commonly used mother wavelet that satisfies Eq. 92 is the ‘‘Mexican
hat’’ wavelet, which is the negative of the second derivative of the Gauss-
ian distribution. It takes the form

1�21 2� � 2 �t � �2Ž . Ž . Ž .g t � 1 � t e 93ž /2�

and is illustrated in Fig. 32. The effective width of the illustrated filter is
Ž . Ž .16a, where a is the scale parameter. Substitution of Eq. 93 into Eq. 91

gives
�1�2 2

�1 t � t 2 2 � ��Ž t ��t . �Ž2 a .Ž . Ž . Ž .W t , a � 1 � e f t dt . 94Hž / ž /2 a� a��

The filter in this case is the Mexican hat wavelet. For an effective width of
16a, with a � 1, seventeen values from the Mexican hat as given in Eq.
Ž . Ž . Ž .93 are being convolved with the time series W t, a in Eq. 94 ; for a � 2,
thirty-three values from the Mexican hat are being convolved with the time
series, and so forth.

Many other wavelet transforms have been proposed in the literature.
For example, a simple box wavelet known as the Haar wavelet has found
wide use. A disadvantage of most wavelet transforms, including the Mexi-
can hat and Haar, is that the sequence of wavelets is not orthogonal; i.e.,
as with Fourier transforms, the complete set can be inverted to reproduce

Ž .the original signal. To overcome this difficulty, Daubechies 1988 intro-
duced an orthogonal wavelet. Unfortunately, this wavelet transform has an
extremely complex waveform. Because we find very good results in quanti-
fying the strength of persistence when we use the Mexican hat wavelet, we
have not extensively examined other wavelets.

7.2. Applications to Fractional Gaussian Noises and Motions

Ž .The wavelet transform from Eq. 94 has been applied to several
fractional Gaussian noises and fractional Brownian motions, each with
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Ž � . Ž . Ž � .FIG. 32. Mother Mexican hat wavelet g t from Eq. 93 , where g t is the negative of the
second derivative of a normal distribution. The width of this wavelet is 16a.

Ž .N � 4096 points. A Mexican hat wavelet, Eq. 93 , with an effective width
of 16a is convolved, 16a points at a time, with the time series y ,n
n � 1, 2, 3, . . . , N. The first convolution is centered at n � 8a, n increasing

Žat �1 intervals, and the last convolution is centered at N � 8a n � 8a,
. Ž .8a � 1, 8a � 2, . . . , N � 8a . In Fig. 33, results for W t, a are shown for

noises with � � �1, 0, 1, 2 and Mexican hats with a scale parameter,
a � 1, 2, 4, 8, 16. The original time series, y , is shown at the bottom ofn

Ž .each graph. As we would expect, for an antipersistent � � �1 time
Ž .series, the amplitude, W t, a , of the resulting wavelet transform is strongest

Ž . Žfor high frequencies a small . For an uncorrelated signal a Gaussian
. Ž .white noise, � � 0 , W t, a is equal for all a; in other words, the signal is

stationary, so there is no change in the variance at different a. For
Ž . Ž .persistent signals � � 1, 2 , the wavelet amplitude, W t, a , is strongest

Ž .for the low frequencies a large .
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In order to quantify the dependence of W on a and � , we determine
V , the variance of W, as a function of a. The results using fractionalW
noises with � � �2, �1, 0, 1, 2, 3, are given in Fig. 34. In each case, we
find an excellent correlation with the relation

H w Ž .V � a . 95W

Ž .Flandrin 1992, 1993 applied a similar approach to fractional Brownian
motions, finding a power-law behavior of the variance of W, from which he
calculated an estimate for the fractal dimension of the fractional Brownian
motions.

Fig. 35 gives the values of Hw as a function of � , obtained from the best
Ž .fit of Eq. 95 in the range �3 	 � 	 5. A good correlation with the

relation

Ž .� � Hw 96

is obtained over the entire range. The wavelet transform provides a
powerful measure of the strength of persistence or antipersistence over the
complete range of fractional Gaussian noises and fractional Brownian
motions. Moreover, because the wavelet transform is not sensitive to
nonstationarities like Fourier analysis, one does not need to worry about
detrending, windowing, spectral variance, etc.

7.3. Applications to Fractional Log-Normal Noises and Motions

Ž .The wavelet transform from Eq. 94 has been applied to several
fractional log-normal noises and motions, each with 4096 points. In Fig. 36,

Ž .results for W t, a are shown for noises with c � 0.5 and � � �1, 0, 1, 2,v
using Mexican hats with a scaling parameter, a � 1, 2, 4, 8, 16. The original
time series is shown at the bottom of each graph. For decreasing a, the

Ž .signal, W t, a , increases when � � �1, is almost constant when � � 0,
decreases when � � 1, and decreases even more when � � 2.

In order to quantify the dependence of W on both a and � , we
determine V , the variance of W, as a function of a. The results forW
� � �2, �1, 0, 1, 2, 3 are given in Fig. 37. Again, excellent fits are found

Ž .with Eq. 95 . Fig. 38 presents the values of Hw as a function of � ,
Ž .obtained from the best fit of Eq. 95 in the range �3 	 � 	 5. For

Ž .FIG. 33. Wavelet transform W t, a of four fractional Gaussian noises and fractional
Ž .Brownian motions � � �1, 0, 1, 2 with N � 4096 points. The ‘‘Mexican hat’’ wavelet from

Ž .Eq. 94 is used with a width of 16a, for a � 1, 2, 4, 8, 16. The fractional noises and motions
used in each wavelet analysis are given at the bottom of each figure, and above the time

Ž .series, W t, a is given for each value of a.
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FIG. 34. Wavelet variance analyses for several fractional Gaussian noises and fractional
Brownian motions with N � 4096 points. The ‘‘Mexican hat’’ filter, with a filter width of 16a,
has been applied to the noises and motions. Examples of time series with N � 512 points and
the same characteristics as the noises and motions we use here are illustrated in Fig. 10. The
population variance of the wavelet amplitude, V , is given as a function of the wavelet width,W

H w Ž .a, for a � 1, 2, 4, 8, 16. The straight-line correlations are with V � a , Eq. 95 . The slopeW
Ž . Ž .of the best-fit straight line for log V vs log a is Hw. Values for Hw are given for each ofW

Ž . Ž . Ž .the examples. The diamonds � � �2, �1 , triangles � � �1, 0, 1 , circles � � 1, 2, 3 ,
Ž .and squares � � 3 are explained in Table I.
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FIG. 35. The dependence of the wavelet variance exponent, Hw, on � , for fractional
Gaussian noises and fractional Brownian motions with N � 4096 points. The values for Hw

H w Ž .have been obtained from the best fit of V � a , Eq. 95 . Results are given for �3 	 � 	 5;W
each symbol represents the best fit for Hw at that �. Examples of obtaining Hw from wavelet
variance analysis are given in Fig. 34. The straight-line correlation is with the relation

Ž . Ž . Ž .� � Hw, Eq. 91 , for �3 	 � 	 5. The diamonds �3 	 � 	 �1 , triangles �1 	 � 	 1 ,
Ž . Ž .circles 1 	 � 	 3 , and squares 3 	 � 	 5 are explained in Table I.

Ž .c � 0.2, an extremely good correlation with � � Hw, Eq. 96 , is foundv

for � � 5 down to about � � �1; for values of � more negative than
� � �1, Hw is more positive than expected. For higher coefficients of
variation, c � 0.5 and c � 1.0, the deviation gets worse, and Hw fails tov v

predict the expected value for values of � more negative than � � �0.5
and �0.2, respectively.

The wavelet transform provides a very powerful measure of persistence
or antipersistence for log-normal fractional noises and motions with � � 0.
For negative values of � it does not do as good a job. We recommend a
transformation to a Gaussian distribution for non-Gaussian distributions
with � � 0.
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8. SUMMARY

The basic concepts of self-affine time series have been introduced in this
article. In a self-affine time series, the power-spectral density as defined in

Ž . Ž .Eq. 38 scales as a power-law function of the frequency, Eq. 39 . Time
series are quantified by their statistical distribution of values and by their
persistence or antipersistence. Persistence can be classified in terms of
range, short-range or long-range, and in terms of strength, weak or strong.

Ž .The distribution of values is usually either Gaussian normal or log-nor-
mal. The basic characteristic of a self-affine time series is that the
persistence is scale invariant. Thus, a self-affine time series has long-range
persistence by definition.

In this chapter, we have examined a variety of techniques to quantify
the strength of long-range persistence in self-affine time series. These in-
clude Fourier power-spectral analysis, semivariogram analysis, rescaled-
range analysis, average extreme-event analysis, and wavelet variance anal-
ysis. Other techniques to examine long-range persistent series,

Žnot discussed in this article, include dispersional analysis Bas-
. Žsingthwaighte and Raymond, 1995 , maximum likelihood estimators Beran,

. Ž .1994 , and the roughness�length technique Malinverno, 1990 . The
roughness�length technique is similar to the rescaled-range method ap-
plied to the original time series, in that the ‘‘roughness’’ of the time series
is found to have a power-law dependence on the window length. The
roughness is defined as the root-mean-square residual on a linear trend
over the length of the window.

Ž .In addition, Beran 1994 , along with other authors, discusses long-range
persistence techniques that examine composite long-memory processes,

Ž .such as fractional autoregressive integrated moving average FARIMA
models. Composite long-memory processes are characterized by more than
two parameters; in this article we have restricted our analysis to single-
parameter long-memory processes, i.e., processes where the persistence is
characterized by one parameter, � , Ha, Hu, He, or Hw.

Synthetic self-affine time series were generated using spectral tech-
niques and the method of successive random additions. Although the
spectral technique can be used to generate fractional noises with any value
of � , we used the technique to generate noises in the range �1 	 � 	 1.
These discrete noises were summed to give fractional motions in the range

Ž .FIG. 36. Wavelet transform W t, a of four fractional log-normal noises and motions
Ž .� � �1, 0, 1, 2 with N � 4096 points and coefficient of variation, c � 0.5. The ‘‘Mexicanv

Ž .hat’’ wavelet from Eq. 94 is used with a width of 16a, for a � 1, 2, 4, 8, 16. The fractional
log-normal noises and motions used in each wavelet analysis are given at the bottom of each

Ž .figure, and above the time series, W t, a is given for each value of a.
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FIG. 37. Wavelet variance analyses for several fractional log-normal noises and motions
with N � 4096 points and c � 0.5. The ‘‘Mexican hat’’ filter, with a filter width of 16a, hasv
been applied to the log-normal noises and motions. The fractional log-normal noises and

Ž . Ž .motions were each obtained by using Eqs. 73 to 76 applied to fractional Gaussian noises
and motions, and letting c � 0.5. Examples of time series with N � 512 points and the samev
characteristics as the noises and motions we use here are illustrated in Fig. 19. The
population variance of the wavelet amplitude, V , is given as a function of the wavelet width,W

H w Ž .a, for a � 1, 2, 4, 8, 16. The straight-line correlations are with V � a , Eq. 95 . The slopeW
Ž . Ž .of the best-fit straight line for log V vs log a is Hw. Values for Hw are given for each ofW

Ž . Ž . Ž .the examples. The diamonds � � �2, �1 , triangles � � �1, 0, 1 , circles � � 1, 2, 3 ,
Ž .and squares � � 3 are explained in Table II.
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FIG. 38. The dependence of the wavelet variance exponent, Hw, on � , for fractional
log-normal noises and motions with N � 4096 points. The values for Hw have been obtained

H w Ž .from the best fit of V � a , Eq. 95 . Results are given for �3 	 � 	 5 and c � 0.2W v
Ž . Ž . Ž .white , 0.5 gray , and 1.0 black ; each symbol represents the best fit for Hw at that �.
Examples of obtaining Hw from wavelet variance analysis are given in Fig. 37. The

Ž .straight-line correlation is with the relation � � Hw, Eq. 96 , for �3 	 � 	 5. The dia-
Ž . Ž . Ž . Ž .monds �3 	 � 	 �1 , triangles �1 	 � 	 1 , circles 1 	 � 	 3 , and squares 3 	 � 	 5

are explained in Table II.

1 	 � 	 3, and differenced to give extended fractional noises in the range
�3 	 � 	 �1. The method of successive random additions was used to
generate fractional motions in the range 1 	 � 	 3. The discrete motions
could then be summed to give extended fractional motions in the range
3 	 � 	 5 and differenced to give fractional noises in the range �1 	
� 	 1.

Self-affine time series with � � 1 have a systematically different behav-
ior than self-affine time series with � � 1. With � � 1, the time series are
nonstationary and moments of the time series depend upon its length.
Over the range 1 	 � 	 3, the time series are self-affine fractals with
fractal dimension, 1 	 D 	 2. These time series are known as fractional
motions; with � � 2, the time series is a Brownian motion. Time series in
the range �1 	 � 	 1 are known as fractional noises and are stationary.
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With � � 0, the time series is a white noise. We define the self-affine time
series with � � 1 to have strong persistence and the self-affine time series
with � � 1 to have weak persistence.

We have used a variety of techniques to quantify the strength of
persistence of synthetic self-affine time series with �3 	 � 	 5:

Ž .1 Semivariograms quantify the strength of persistence in the range
1 	 � 	 3. Self-affine time series in this range are nonstationary and are
considered to be self-affine fractals. The characteristic measure of a
semivariogram is the Hausdorff exponent, Ha. For both fractional Gauss-
ian motions and fractional log-normal motions, 1 	 � 	 3, there is a good
correlation with � � 2 Ha � 1.
Ž .2 Rescaled-range analyses quantify the strength of persistence in the

range �1 	 � 	 1. Self-affine time series in this range are stationary. The
characteristic measure of R�S analysis is the Hurst exponent, Hu. For
fractional Gaussian noises, the correlation with � � 2 Hu � 1 is relatively
poor, particularly for � � 0. For fractional log-normal noises, the correla-

Ž .tion becomes worse. The convergence of Hu to Hu � � � 1 �2 is poor
for long record lengths.
Ž .3 Average extreme-value analyses quantify the strength of persistence

in the range 1 	 � 	 3. The characteristic measure of average extreme-
value analysis is the extreme-value exponent, He. The correlation with
� � 2 He � 1 is the same as the correlation of Hu with � � 2 Hu � 1,

Ž . Ž .except that Hu � � He � � 2 .
Ž .4 Spectral techniques can, in principle, quantify the strength of persis-

tence for all values of �. Both stationary and nonstationary self-affine time
series can be considered. For a self-affine time series with a prescribed � ,
Fourier spectral techniques provide a direct confirmation of this � using
the power-law dependence of S on f . For fractional Gaussian noisesm m
and motions, biased results can be found for � � 2 and � � 0, unless
windowing is applied to the time series. When windowing is applied,
spectral techniques accurately quantify the persistence for almost all
values of �. For fractional log-normal noises and motions, even with
windowing, � does not provide a reliable measure of persistence for
� � 0; we recommend for all � � 0 non-Gaussian distribution time series
that the time series be converted to a Gaussian distribution before
applying spectral techniques.
Ž .5 Wavelet variance analyses quantify the strength of persistence for all

�. Self-affine time series in this range are both stationary and nonstation-
ary. The characteristic measure of wavelet variance analysis is the wavelet
exponent, Hw. In many ways, wavelet analyses are the most satisfactory
measure of the strength of persistence, particularly for data sets that are
nonstationary. Wavelet analyses do not have many of the inherent prob-
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lems that are found in Fourier power-spectral analysis, such as windowing
and detrending. For � � 0, Hw correlates well with Hw � � for both
fractional Gaussian and fractional log-normal noises and motions. For
� � 0, Hw correlates well with Hw � � for both fractional Gaussian
noises and motions, but is poor for fractional log-normal noises and
motions. We recommend for � � 0 that a non-Gaussian distribution of
values be converted to a Gaussian distribution.

Self-affine time series are found in a wide variety of geophysical applica-
tions. Examples include the natural variability of climate, variations in
sedimentation, and the variability of the Earth’s magnetic field. Stochastic
differential equations can generate self-affine time series with a variety of
values for �. Geophysical applications and relevant models are discussed

Ž .in the article following this one Pelletier and Turcotte, 1999 .
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APPENDIX

ABBREVIATIONS AND SYMBOLS

Equation Section
Symbol Description introduced introduced

a Scale parameter in wavelet
analysis 91 7.1

A Constant of proportionality 59 2.3
Ž . Ž .Average value of , normallyav

over a given interval 
 81 5.1
Bm Brownian motion 18 1.6
c Covariance of y at zero lag 4, 6 1.40 n
Ž . Ž .c 0 Covariance of y t at zero lag 1, 3 1.4

c Covariance of y at lag k 4, 5 1.4k n
Ž . Ž .c s Covariance of y t at lag s 1, 2 1.4

c Coefficient of variation 74 4.1v

Ž .continued



BRUCE D. MALAMUD AND DONALD L. TURCOTTE84

Ž .ABBREVIATIONS AND SYMBOLS continued

Equation Section
Symbol Description introduced introduced

D Fractal dimension 13 1.5
DFT Discrete Fourier transform 1.6
e Exponential, e � 2.718 30 2.1
� f Width of a frequency bin,

Ž .� f � 1� N� 64 2.4
f Continuous frequency 30 2.1
f Discrete frequency,m

Ž .f � m� N� 42 2.1m
Ž .f x Function of x 1.5

fBm Fractional Brownian motion 3.2
fGn Fractional Gaussian noise 3.2
Ž . Ž .G f Fourier transform of g t 30 2.1
Ž .g t Periodic continuous function 30 2.1

�Ž .g t Mother wavelet; filter 91 7.1
Ž .�h L Difference in elevation between

a pair of points 15 1.5
h Elevation 1.2
h Height of rectangular region 1.50
Ha Hausdorff exponent 14 1.5
He Extreme value exponent 88 6.1
Hu Hurst exponent 81 5.1
Hw Wavelet variance analysis

exponent 95 7.2
i Square root of �1 30 2.1
k Lag for a discrete time series, y 4 1.4n

Ž .ln Natural logarithm base e
Ž .log Common logarithm base 10

m Running variable in the
frequency domain, Y , S , f , 34 2.1m m m

Running variable for the running sum, y 82 5.1m
n Running variable for a discrete

time series, y 5 1.2n
N Length of a discrete time series

1 	 n 	 N 5 1.2
Number of subintervals in an

interval T 22 1.6
N , N Number of boxes 22, 26 1.6b b i
N Number of objects with lineari

size r 13 1.5i
Ž .Q t Volumetric flow in a river 77 4.1
Ž .Q T Mean of the volumetric flow

over a period T 77 5.1
r Scaling factor 14 1.5

Ž .continued
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Ž .ABBREVIATIONS AND SYMBOLS continued

Equation Section
Symbol Description introduced introduced

r Width of rectangular region 1.50
r Characteristic linear dimension 13 1.5i
r Autocorrelation functionk

for y at lag k 4 1.4n
R , R Range over N or 
 values;N 


rescaled-range analysis 83, 85 5.1
Ž .r s Autocorrelation function for

Ž .y t at lag s 1 1.4
Ž . Ž .R T , R 
 Range over period T or 
 ;

rescaled-range analysis 79, 81 5.1
s Lag for a continuous time series 1 1.4
Ž . Ž .S f Power-spectral density of y t 38 2.2

S Power-spectral density of y 40 2.2m n
S , S Standard deviation over NN 


or 
 values; rescaled-range analysis 84, 85 5.1
Ž . Ž .S T , S 
 Standard deviation over time

T or 
 , rescaled-range analysis 80, 81 5.1
t Running variable for a

Ž .continuous time series y t 2 1.2
Position parameter in wavelet

analysis 91 7.1
T Length of a continuous

time series, 0 	 t 	 T 2 1.2
Period of a continuous function

Ž .g t 32 2.1
t Discrete values of t, t � n� 1.2n n

Discrete values, t � n�N,n
n � 1, 2, . . . , N 3.3

Ž .V Variance of y t over the
interval T 3 1.4

Variance of y over N values 6 1.4n
V Variance of � over N values 1.6� n
V , V Maximum and minimummax min

volumes of water during T 79 5.1
V Variance of y over the firstn n

n values 18 1.6
V Variance of y over N values 52 2.2N n
Ž .V t Volume of water in a reservoir

as a function of t 78 5.1
Ž .V T Variance over the interval T 3.3

V Variance of the waveletW
Ž .transform W t, a 95 7.2

Ž .continued
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Ž .ABBREVIATIONS AND SYMBOLS continued

Equation Section
Symbol Description introduced introduced

w Window used in power-spectraln
analysis 67 2.5

wn White noise 17 1.6
W Window squared and summed 70 2.5ss
Ž .W t, a Wavelet transform 91 7.1

Ž .x Average of x t , log-normal
distribution of values 74 4.1

Ž .x t Log-normal distribution
of values 73 4.1

Ž .y Average of y t over the
interval T 2 1.4

Average of y over N values,n
n � 0, 1, 2, . . . , N 5 1.4

y Maximum value of y duringe n
an interval 
 88 6.1

Ž . Ž .Y f , T Fourier transform of y t over
the interval 0 	 t 	 T 32 2.1

y Running sum of y 82 5.1m n
Y Discrete Fourier coefficients ofm

y , m � 1, 2, . . . , N 34 2.1n
� �Y Complex modulus of Y 36 2.1m m
y Set of values in a discrete timen

series, n � 1, 2, 3, . . . , N 5 1.2
y Average of y over N values,N n

n � 0, 1, 2, . . . , N 82 5.1
Ž .y t Set of values in a continuous

time series 2 1.2
Ž .Gaussian normal set of values 73 4.1

� Power-spectral density exponent 39 2.2
� Exponent obtained byPS

power-spectral analysis 2.2
� Semivariogram of y at lag k 8 1.4k n
Ž . Ž .� s Semivariogram of y t at lag s 7 1.4

� Time between successive n in a
time series, y , with T � N� 34 1.2n

� Gaussian distribution of valuesn
that are uncorrelated 17 1.6

� Pi, � � 3.1416 . . . 30 2.1
	 Standard deviation of � over� n

N values 18 1.6
	 Standard deviation of y overn n

the first n values in series 19 1.6

Ž .continued
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Ž .ABBREVIATIONS AND SYMBOLS continued

Equation Section
Symbol Description introduced introduced

Ž . Ž .	 T , 	 Standard deviation of y t takenT
over the interval T 22, 23 1.6

Ž . Ž .	 
 , 	 Standard deviation of y t taken


over the subinterval 
 22, 24 1.6
	 Standard deviation of thex

Ž .log-normal distribution x t 74 4.1
	 Standard deviation of they

Ž .Gaussian distribution y t 75 4.1
� Summation 5 1.4

 , 
 Subintervals of a length T or N 22, 26 1.6i
 Angular frequency 2.1
� Proportional 13 1.5
� Infinity 30 2.1

 Approximately equal to
� Equal by definition
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SELF-AFFINE TIME SERIES:
II. APPLICATIONS AND MODELS

JON D. PELLETIER AND DONALD L. TURCOTTE

Department of Geological Sciences
Cornell Uni�ersity

Ithaca, New York 14853-1504

1. INTRODUCTION

ŽIn the previous article Malamud and Turcotte, 1999, hereafter referred
.to as MT , the authors considered various theoretical aspects of self-affine

time series. Several techniques for generating synthetic, self-affine time
series were discussed and alternative methods for analyzing time series
were presented. A primary means of identifying a self-affine time series is
in terms of its Fourier spectrum. For self-affinity the power spectrum or
power-spectral density, S, must have a power-law dependence on fre-

�� Ž .quency, f : S � f MT, Eq. 39 .
When considering self-similar processes in nature, there are generally

upper and lower limits to the validity of power-law statistics. An example is
a power-law distribution for the frequency�size distribution of fragments.
There will always be a largest and a smallest fragment. In many cases
power-law statistics will be applicable over a limited range of sizes. In
other cases two power-law regimes are found with different slopes. There
are also upper and lower limits to the self-affine behavior of naturally
occurring time series. In some cases two or more power-law regimes are
found with different values of �. In this paper we consider several
applications of self-affine time series in geophysics. The coverage of topics
is not meant to be complete. Instead, we consider three examples in some
detail and present applicable models.

The first application we consider is time-series data for local atmo-
spheric temperature. The spectral behavior for time scales between 200
kyr and 500 yr is obtained from deuterium concentrations in the Vostok
ice core. Historical temperature records are analyzed to give the spectral
behavior between time scales of 300 yr and 1 day. The obvious daily and
annual periodicities are removed and we focus on the stochastic content of
the time series. We find that self-affine behavior is applicable over well-
defined frequency bands. The self-affine behavior is associated with inter-

Žactions between the atmosphere, the space above through the radiation of
.heat , and the oceans and continents below. Solutions to a stochastic

diffusion equation for a layer with a substrate reproduce the observed
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statistics. The results are closely related to those for heat diffusion through
a metallic film over a substrate and to variations of solar luminosity. We
have also carried out power-spectral analyses of mean river discharges and
tree ring thicknesses. Both exhibit self-affine behavior with � 
 0.5. This
corresponds to a Hurst exponent Hu 
 0.7, consistent with the previous

Ž .results as discussed by MT Section 5.2 . The implications of a self-affine
river-discharge time series for drought assessment are also considered.

In our second application we consider porosity variations in sedimentary
basins. A model developed for the growth of atomic surface layers is
modified so that it is applicable to the spatial and temporal variations in
deposition and erosion. Self-affine variability is found with � � 2 in space
and � � 1.5 in time. The spatial variability is a Brownian motion. This has
been widely observed as the spectral behavior of topography. We show that
this variability is also consistent with the spatial distribution of oil pools in
sedimentary basins. The temporal variability of sedimentation is associated
with the vertical variability of porosity. Self-affine spectra with � 
 1.5 are
good approximations to observed data. The vertical variability of sedimen-
tation and erosion can also be used to model the completeness of the
sedimentary record. It has been observed that the rate of sedimentation,
R, has a power-law dependence on the time period of sedimentation, T ,
with R � T�0 .76. A self-affine spectrum with � � 1.5 gives R � T�0 .75.

Our third application considers the variability of the earth’s magnetic
field. We argue that intensity variations and reversals of the magnetic field
are a natural consequence of the inherent variability generated by dynamo
action and magnetic diffusion in the core. The field exhibits a binormal
behavior and when a fluctuation crosses the zero intensity value a reversal
occurs. The spectral behavior of the field on time scales of 100 yr to 4 Myr
has been obtained from paleomagnetic data. Over this range it is well

Ž .approximated by a 1�f � � 1 self-affine time series. Synthetic 1�f time
series have been used to generate reversal statistics and these are found to
be in good agreement with observations. The reversal statistics are sensi-
tive to the values of � and we conclude that the agreement is strong
support for 1�f behavior over the entire record of reversals. A model that
generates the observed 1�f behavior is a two-dimensional stochastic
diffusion equation.

2. NATURAL VARIABILITY OF CLIMATE

2.1. Temperature Spectra

Understanding the natural variability of climate is one of the most
important tasks facing climatologists. The Intergovernmental Panel on
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Ž .Climate Change 1995 concluded that the ‘‘balance of evidence suggests a
discernible human impact on the climate system.’’ This conclusion is based,
however, on comparisons with the variability exhibited by general circula-

Ž .tion models GCM . Model runs often exhibit significantly lower variabil-
ity, by a factor of up to 10, and a different frequency dependence on time

Ž .than paleoclimatic data Santer et al., 1995 . Other model results give
natural variability comparable in magnitude to that observed in the last

Ž .100 years Barnett et al., 1992 .
In this section we consider the power spectrum of temporal variations in

atmospheric temperature on time scales of 200 kyr to 1 day. We will show
Ž .that at the longest time scales, at frequencies smaller than f 
 1� 40 kyr

Ž .the power spectrum is flat white noise . At frequencies between f 
 1�
Ž . Ž . �2 Ž40 kyr and f 
 1� 2 kyr the power spectrum is proportional to f a

. Ž .Brownian motion . At frequencies greater than f 
 1� 2 kyr the power
�1�2 Žspectrum is proportional to f . At very high frequencies above f 
 1�

Ž .. �3�21 month the spectrum varies as f for continental stations and
remains proportional to f�1�2 for maritime stations. Thus we find a
sequence of self-affine spectra, each with a characteristic value of � , over
different frequency bands.

We will further show that the observed power spectrum of atmospheric
temperature is identical to the power spectrum of variations due to the
stochastic diffusion of heat in a metallic film that is in thermal equilibrium

Ž .with a substrate Van Vliet et al., 1980 . Temperature variations in the film
and the substrate occur as a result of fluctuations in the heat transport by
electrons undergoing Brownian motion. The top of the film absorbs and
emits blackbody radiation. In our analogy we associate the atmosphere
with the metallic film and the oceans with the substrate. Turbulent eddies
in the atmosphere and oceans are analogous to the electrons undergoing
Brownian motion in a metallic film in contact with a substrate.

We first consider the spectral behavior of the deuterium concentrations
Ž .in the Vostok East Antarctica ice core. A 220-kyr record of temperature

Ž . Žfluctuations is obtained using the conversion 5.6� D % � 1�K Jouzel
.et al., 1987 . The plot of variations in temperature versus age is given in

Ž .Fig. 1. Jouzel and Merlivat 1984 have concluded that the Vostok deu-
terium record is a proxy for local atmospheric temperature. Because the

Ždata are unevenly sampled we utilized the Lomb periodogram Press et al.,
.1992 to estimate the power spectrum. The results are given in Fig. 2. We

associate the power spectrum with three regions of different self-affine
Ž .behavior. The first region, at frequencies less than f 
 1� 40 kyr , is a

Ž . Ž .white noise � 
 0 . The second region, between f 
 1� 40 kyr and
Ž . Ž .f 
 1� 2 kyr , is a Brownian motion � 
 2 . In the third region, with

Ž .frequencies greater than f 
 1� 2 kyr , there is a change to a lower value
of �. This change is associated with rapid variations in the Vostok core.
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FIG. 1. Atmospheric temperatures at Vostok, Antarctica inferred from deuterium concen-
Ž .trations in the Vostok ice core. From Jouzel et al., 1987 .

Ž .This is also observed in ice cores from Greenland Yiou et al., 1995 .
Ž .Details of this analysis have been given by Pelletier 1997a .

In order to extend our analyses to higher frequencies we have carried
out power-spectral analyses on data for atmospheric temperature varia-
tions from weather stations. One of the longest available records is for the

FIG. 2. Power-spectral density estimated with the Lomb periodogram of the temperature
Ž .inferred from the deuterium concentrations in the Vostok East Antarctica ice core. The

power-spectral density S is given as a function of frequency for time scales of 500 yr to
200 kyr.
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Ž .FIG. 3. Average monthly atmospheric temperature for central England Manley, 1974 with
the yearly periodicity removed.

average monthly temperature in central England, 1659�1973. The data are
Ž .tabulated in Manley 1974 . The yearly periodicity was removed from these

data by subtracting from each value the average temperature of that
month for the entire record. The resulting time series is given in Fig. 3.
This time series exhibits rapid fluctuations from year to year superimposed
on more gradual, lower frequency variations. The power spectrum esti-

Ž .mated as the square of the coefficients of the fast Fourier transform FFT
is presented in Fig. 4 along with a least-squares power-law fit to the data
with � 
 0.47. We have also determined the average power spectrum of
the time series of monthly mean temperatures from 94 stations worldwide

Ž .with the yearly trend removed. We obtained the power spectra S f of all
complete temperature series of length greater than or equal to 1024

Ž .months from the climatological database compiled by Vose et al. 1992 .
The yearly trend was removed by subtracting from each monthly data point
the average temperature for that month in the 86-year record for each
station. All of the power spectra were then averaged at equal frequency
values. The results are given in Fig. 5. The data yield a straight line on a

Ž . �1�2log�log plot with slope close to �0.5, indicating that S f � f in this
frequency range.

Finally we consider the average power spectrum of time series of daily
Žmean temperature estimated by taking the average of the maximum and

.minimum temperature of each day from 50 continental and 50 maritime
stations over 4096 days. Maritime stations are sites on small islands far
from any large land masses. Continental stations are well inland on large
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FIG. 4. Power-spectral density of the time series of central England temperatures in Fig. 3.

continents, far from any large bodies of water. We chose 50 stations at
Žrandom from the complete records those with greater than 4096 nearly

. Žconsecutive days of data of the Global Daily Summary database National
.Climatic Data Center, 1994 . Once again the yearly periodicities were

removed. The results are given in Figs. 6 and 7. Continental stations

FIG. 5. Average power-spectral density of 94 complete monthly temperature time series
Ž . �1from the data set of Vose et al. 1992 plotted as a function of frequency in yr . The

power-spectral density S is given as a function of frequency for time scales of 2 months to
100 yr.
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FIG. 6. Average power-spectral density of 50 continental daily temperature time series
Ž . �1from the National Climatic Data Center 1994 as a function of frequency in yr . The

power-spectral density S is given as a function of frequency for time scales of 2 days
to 10 yr.

FIG. 7. Average power-spectral density of 50 maritime daily temperature time series from
Ž . �1the data set of the National Climatic Data Center 1994 as a function of frequency in yr .

The power-spectral density S is given as a function of frequency for time scales of 2 days
to 10 yr.
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FIG. 8. Power-spectral density of local atmospheric temperature from instrumental data
and inferred from ice cores for time scales of 200 kyr to 2 days. The high-frequency data are
for continental stations. Piecewise power-law trends are indicated.

Ž . �3�2Fig. 6 correlate with a f high-frequency region. Maritime stations
Ž . �1�2Fig. 7 correlate with a f scaling up to the highest frequency. The

Ž .crossover frequency for the continental spectra is f 
 1� 1 month . The
difference between continental and maritime stations results from the air
mass above maritime stations exchanging heat with both the atmosphere
above and the oceans below while the air mass above continental stations
exchanges heat only with the atmosphere above it. Because of the low
thermal conductivity of the solid earth, it does not act as a thermal buffer.
The three spectra have been combined in Fig. 8 to give a continuous
spectral behavior of atmospheric temperature from frequencies of 10�6 to
102 yr�1.

2.2. River-Discharge and Tree-Ring Spectra

Before presenting a theoretical basis for the temperature time-series
spectra given above, we will consider two additional time series. We first
give power-spectral analyses of hydrological time series. Figure 9 presents
the results of power-spectral analyses of monthly mean river-discharge
data in the United States from the Hydro-Climatic Data Network compiled

Ž .by Slack and Landwehr 1992 . The annual variabilities were removed and
the power spectra were computed in the same manner as for the tempera-
ture data. For the streamflow data we chose all complete records with a
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FIG. 9. Average normalized power-spectral density of 636 monthly river-discharge series as
a function of frequency in yr�1 .

duration greater than or equal to 512 months and included 636 records in
our analysis. Since river discharges can vary by orders of magnitude
between river basins, we normalized the variance of each series before
averaging the spectra. A least-squares fit to the data gives � 
 0.50,
consistent with the value observed for the temperature data in the same
frequency range. We have taken advantage of the large number of avail-
able stations to investigate the possible regional variability of the power
spectra. We have averaged the power spectra for each of the 18 hydrologic
regions of the U.S. defined by the United States Geological Survey and

Ž .given in Wallis et al. 1991 . All of the regions exhibit the same spectral
dependence with an average � value of 0.52 and a standard deviation of
0.03, indicating little variation.

The second time series we consider is the sequence of annual tree-ring
widths. We have performed spectral analyses of tree-ring width chronolo-
gies in the western United States obtained from the International Tree
Ring Database. Tree rings in the western U.S. are strongly correlated with

Ž .precipitation Landwehr and Matalas, 1986 . The chronologies are time
series in which the nonstationarities in growth rates have been removed
and spatial averaging has been performed in an attempt to isolate climatic
effects. Tree-ring series have the advantage of being much longer than
most historical records. We obtained 43 chronologies in the western U.S.
greater than 1024 years in length. The average normalized power spectrum



JON D. PELLETIER AND DONALD L. TURCOTTE100

FIG. 10. Average normalized power-spectral density of 43 tree-ring chronologies in the
western U.S. as a function of frequency in yr�1 .

of those records is presented in Fig. 10. The least-squares fit indicates that
Ž . �1�2for tree-ring time series, S f is nearly proportional to f .

Ž . Ž .In the frequency range f 
 1� 2 kyr to 1� 1 month the three data sets,
atmospheric temperature, river discharge, and tree-ring widths, all yield
spectra with a slope � 
 0.5. In Section 5.2 of MT the application of the
rescaled-range technique was discussed. It was pointed out that Hurst et

Ž .al. 1965 applied the rescaled-range method to time-series data for atmo-
spheric temperature, river discharge, precipitation, tree-ring widths, and
other climatological time series. Good correlations were obtained with the

Ž .Hurst relation MT, Eq. 81 taking Hu � 0.73 on average. From the
correlation between Hu and � given for fractional Gaussian noises in MT,
Fig. 25, we see that Hu � 0.73 is entirely consistent with the observed
value � 
 0.5.

2.3. Stochastic Diffusion Model

To see how time series with power-law power spectra arise, we present
the results from the simulation of a discrete, one-dimensional stochastic
diffusion process. A discrete version of the diffusion equation for the
density of particles on a one-dimensional grid of points is

Ž . Ž . Ž . Ž . Ž . Ž .n t � n t � n t � 2n t � n t . 1i j�1 i j i�1 j i j i�1 j

We establish a one-dimensional lattice of 32 sites with periodic boundary
conditions at the ends of the lattice. At the beginning, we place 10
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FIG. 11. Average power-spectral density of the number of random walkers in the central
site of a lattice. The average of 50 simulations is presented.

particles on each site of the lattice. At each time step, a particle is chosen
1at random and moved to the left with probability and to the right if it2

does not move to the left. In this way, the average rate at which particles
leave a site is proportional to the number of particles in the site. The
average rate at which particles enter a site i is proportional to the number
of particles on each side multiplied by one-half since the particles to the
left and the right of site i move into site i only half of the time. This is a

Ž .stochastic model satisfying Eq. 1 . The probabilistic nature of this model
causes fluctuations to occur in the local density of random walkers. These
fluctuations do not occur in a deterministic model of diffusion.

In Fig. 11 we present the average of 50 power spectra, each spectrum
from a time series of the number of particles in a central site of the 32-site

Ž . �1�2lattice. The figure shows a power spectrum of the form S f � f . In
Fig. 12 we plot the cumulative probability distribution of the time series
produced by the stochastic diffusion model. The solid circles represent
data. The curve represents the cumulative log-normal distribution fit to the
data. A good fit is obtained.

Since the distribution of values in a hydrological time series is often
log-normal, we have shown that a simple model of stochastic diffusion
gives rise to both the power spectrum and the distribution observed for
hydrological time series. Below we study the stochastic diffusion of heat
energy in a region with boundary conditions appropriate to the coupled
atmosphere�ocean system. Although the discussion is applied to transport
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FIG. 12. Cumulative distribution function of the time series produced by the stochastic
Ž .diffusion model solid lines . The curve represents the cumulative log-normal distribution

function fit to the data.

of heat energy and the resultant temperature fluctuations in the atmo-
sphere, the same model can be applied to the turbulent transport of water
vapor in the atmosphere and the resultant variations in precipitation
through time. Therefore, this model provides a means to understand why
the variations in temperature and in precipitation have similar statistics.

A stochastic diffusion process can be studied analytically by adding a
Žnoise term to the flux of a deterministic diffusion equation Van Kampen,

.1981 :

��T � J
Ž .�c � � , 2

� t � x

��T
Ž . Ž .J � �	 � � x , t , 3

� x

where J is the heat flux, �T is the fluctuation in temperature from
equilibrium, � is the density, c is the heat capacity per unit mass, 	 is the
thermal conductivity, and � is a Gaussian white noise in space and time.

Ž . Ž .Equation 2 is conservation of energy. Equation 3 is Fourier’s law of
heat transport with random advection of heat superimposed. The random-
advection term models the effects of local convective instabilities which

Ž .randomly advect heat vertically in the atmosphere. Novikov 1963 has
proposed this method for studying turbulent fluctuations.
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Ž . Ž .FIG. 13. a Geometry of the one-dimensional diffusion calculation detailed in the text. b
Ž .Boundary conditions appropriate to the air masses above the ocean maritime stations ,

Ž .where the ocean acts as a thermal conductor. c Boundary conditions appropriate to the air
Ž .masses above the continents continental stations , where the continents act as a thermal

insulator.

We now determine the behavior of the stochastic diffusion model in
terms of the power spectrum of temperature fluctuations in a layer of

Ž . Ž .width 2 l embedded in an infinite space in which Eqs. 2 and 3 are
applicable. The presentation we give is similar to that of Voss and Clarke
Ž .1976 . The variations in total heat energy in the layer of width 2 l are
determined by the heat flow across the boundaries. Figure 13a illustrates
the geometry of the layer exchanging thermal energy with diffusing regions
above and below it. A diffusion process has a frequency-dependent corre-

Ž .1�2 Ž .lation length � � 2��f Voss and Clarke, 1976 , where � is the
Ž .diffusion coefficient, � � 	� �c . Two different situations arise as a

consequence of the length scale, 2 l, of the geometry. For high frequencies
� � 2 l, the fluctuations in heat flow across the two boundaries are
independent. For low frequencies � � 2 l, the fluctuations in heat across
the two boundaries are in phase.

First we consider high frequencies. Since the boundaries fluctuate inde-
pendently, we can consider the flow across one boundary only. The flux of

Ž .heat energy is given by Eq. 2 . Its Fourier transform is given by

Ž .i� k , 
Ž . Ž .J k ,  � , 42� k � i
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where f � 2� and k is the wave number. The flux of heat energy out of
Žthe layer at the boundary at x � l the other boundary is located at

.x � �l is the rate of change of the total energy in the layer
Ž . Ž . Ž .E t : dE t �dt � J l, t . The Fourier transform of this equation is

�i
ik lŽ . Ž . Ž .E  � � dk e J k ,  . 5H1�2Ž . ��2� 

Ž . Ž . ² � Ž . � 2:Therefore, the power spectrum of variations in E t , S  � E  ,E
is

� dk
�3�2Ž . Ž .S  � �  . 6HE 2 4 2� k � ��

In the above expression, the noise term � does not appear because, since
it is white noise in space and time, its average amplitude is independent of
 and k, i.e., it is just a constant. Since �T � � E, the power spectrum of

Ž . �3�2temperature has the same form as S and S  �  .E T
If we include the heat flux out of both boundaries, the rate of change of

Ž .energy in the layer will be given by the difference in heat flux: dE t �dt �
Ž . Ž . Ž .J l, t � J �l, t . The Fourier transform of E t is now

�1
Ž . Ž . Ž . Ž .E  � dk sin kl J k ,  . 7H1�2Ž . ��2� 

Then,
2 Ž .� dk sin kl

Ž . Ž .S  � S  �HT E 2 4 2� k � ��

�3�2 Ž �� Ž .. Ž .�  1 � e sin � � cos � , 8

Ž .1�2 2where � � � and  � ��2 l is the frequency at which the0 0
correlation length is equal to the width of the layer. When � � 2 l, the

Ž . �3�2 Ž . �1�2above expression reduces to S f � f . When � � 2 l, S f � fT T
Ž .Voss and Clarke, 1976 . In this limit the boundaries fluctuate in phase,
and heat that enters into the region from one boundary can diffuse out of
the other boundary. The result is a sequence of fluctuations which are less

Ž . �3�2persistent � is smaller than in the single-boundary f case.
In Section 2.1 we presented evidence that continental stations exhibit a

f�3�2 high-frequency region and maritime stations exhibit f�1�2 scaling up
to the highest frequency considered. This observation can be interpreted in
terms of the diffusion model presented above. The power spectrum of
temperature variations in an air mass exchanging heat by one-dimensional
stochastic diffusion is proportional to f�1�2 if the air mass is bounded by
two diffusing regions and is proportional to f�3�2 if it interacts with only
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one. The boundary conditions appropriate to maritime and continental
stations are presented in Figs. 13b and 13c, respectively. The layer consid-
ered is taken to have an upper boundary embedded in the atmosphere and
a lower boundary at the earth’s surface. For maritime stations heat is
transferred across this lower boundary into the oceans, so it is equivalent
to the case ��l � 1 and therefore the power spectrum of temperature

Ž . �1�2variations is S f � f . For continental stations the lower boundary is
Ž .insulating, so it is equivalent to the case ��l � 1 and therefore S f �

f�3�2. At low frequencies, horizontal heat exchange between continental
and maritime air masses limits the variance of the continental stations.
This crossover should occur at the time scale when the air masses above
continents and above oceans become mixed. The time scale for one
complete Hadley or Walker circulation which mixes the air masses is
approximately 1 month, the same time scale as the observed crossover
Ž .Pelletier, 1997a .

Next we consider the stochastic diffusion model in a geometry appropri-
ate for a coupled atmosphere�ocean model with an atmosphere of uni-

Ž .form density equal to the density at sea level in thermal contact with
oceans of uniform density. The height of our model atmosphere is the

Žscale height of the atmosphere height at which the pressure falls by a
.factor of e from its value at sea level . Figure 14 illustrates the geometry

and constants chosen with 	 the vertical heat conductivity, � the density,
c the specific heat per unit mass, � the vertical thermal diffusivity, and g
the thermal conductance of heat out of the Earth by emission of radiation.
Primed constants denote values for the oceans. The physical constants
which enter the model are the density, specific heat, vertical thermal
diffusivity, depths of the oceans and the atmosphere, and the thermal
conductance by emission of radiation. The density and the specific heat of
air and water are well-known constants. We choose an ocean depth of
4 km and an atmospheric height equal to the scale height of 8 km as used

Ž .by Hoffert et al. 1980 in their climate modeling studies. The eddy
diffusivity we employ for the oceans is 6 
 10�5 m2�s. This value has been

Ž .obtained from tritium dispersion studies Garrett, 1984 . The vertical eddy
2 Ž .diffusivity for the atmosphere we use is 1 m �s, as quoted by Pleune 1990

Ž .and Seinfeld 1986 for stable air conditions. This eddy diffusivity implies
an equilibration time of the tropospheric air column of 2 years. This value
is roughly consistent with the 1 year decay time of the Pinatubo and El

Ž .Chichon aerosols Hofmann and Rosen, 1987; Rosen et al., 1994 .
Since the time scales of horizontal diffusion in the atmosphere and the

oceans are so much smaller than the time scales of vertical diffusion, the
rate-limiting step for thermal equilibration is vertical transport. For this
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FIG. 14. Geometry of the coupled atmosphere�ocean model and the constants chosen.

reason, we consider only the variations in local temperature resulting from
vertical heat exchange in the atmosphere and oceans.

The equation for temperature fluctuations in space and time in the
Ž . Ž .model from Eqs. 2 to 5 is

Ž . 2 Ž . Ž .��T x , t � �T x , t �� x , t
Ž . Ž .� � x � � . 92� t � x� x

The mean value of � is zero and the flux of heat is proportional to the
temperature:

² Ž .: Ž .� x , t � 0, 10

² Ž . Ž .: Ž .² Ž .:2 Ž . Ž . Ž .� x , t � x�, t� � 	 x T x � x � x� � t � t� . 11

The delta functions indicate that the white-noise term � is uncorrelated in
space and time.

Ž .North and Cahalan 1981 analyzed a similar model of climate change
with respect to predictability. They studied the diffusion equation in two
dimensions as a model for horizontal heat transport in the atmosphere.
They included a white-noise term on the right-hand side of the diffusion

Ž Ž . Ž . .equation they used � x, t where we use �� x, t �� x to represent
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variations in heat transport by turbulent eddies. However, a noise term in
the flux of temperature rather than in the temperature itself is more
appropriate as a model for variations in turbulent heat transfer.

The boundary conditions are that no heat flows out of the bottoms of
the oceans and that there is continuity of temperature and heat flux at the
atmosphere�ocean boundary:

� T
Ž .	 � � 0, 12

� x x�w 2

Ž �. Ž �. Ž .�T x � w � �T x � w , 131 1

��T ��T
Ž .	 � 	 � . 14

� �� x � xx�w x�w1 1

At the top of the atmosphere we impose a blackbody-radiation boundary
Ž .condition. Most 65% of the energy incident on the Earth is reradiated as

long-wavelength blackbody radiation from the water and carbon dioxide in
Ž .the atmosphere Peixoto and Oort, 1992 . This radiated energy depends on

the temperature of the atmosphere at the point of emission according
to the Stefan�Boltzmann law. It is common practice to assume that tem-
perature variations about equilibrium are small. This is a good approxima-
tion since the global mean temperature fluctuated by only about ten
degrees Kelvin during the last glaciation, as illustrated in Fig. 1. With a
linear approximation, the radiated energy is proportional to the tempera-

Ž .ture difference from equilibrium Ghil, 1983 . The boundary condition at
Žthe scale height of the atmosphere which we take to be representative of

.the average elevation where radiation is emitted from the atmosphere is
then

��T
Ž . Ž .	 � g�T x � 0 . 15

� x x�0

2 Ž .We will use the value g � 1.7 W�m �K as used by Ghil 1983 and
Ž Ž .Harvey and Schneider 1985 . It is often assumed that a feedback exists
between atmospheric or sea-surface temperature and cloud cover. If such
a feedback existed, it might be necessary to parameterize radiated energy
in terms of cloud cover or atmospheric water vapor. However, no evidence

Ž .for such a feedback has been found Arking and Ziskin, 1994 .
The existence of two layers of different diffusivity makes the study of the

two-layer model much more complex than that of the one-layer models
applied to the atmosphere above the continents and the oceans. Van Vliet

Ž .et al. 1980 used Green’s functions to solve this two-layer model. The
Green’s function of the Laplace-transformed diffusion equation is defined
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by
2 Ž .� G x , x�, i

Ž . Ž . Ž . Ž .iG x , x�, i � � x � � x � x� , 162� x
where G is governed by the same boundary conditions as �T. This
equation can be solved by separating G into two parts: G and G witha b
x � x� and x � x�, respectively. G and G satisfy the homogeneousa b
Ž .unforced diffusion equation with a jump condition relating G and G :a b

� G � G 1a b Ž .� � . 17Ž .� x � x � x�x�x � x�x �

The power spectrum of the average temperature in the atmosphere in
Ž .terms of G is given by Van Vliet et al. 1980 as

w w1 1Ž . Ž . Ž .S f � Re G x , x�, i dx dx� 18H H�T 1ž /0 0

w x1 Ž .� Re G x , x�, i dx dx�H H 1bž 0 0

w w1 1 Ž . Ž .� G x , x�, i dx dx� , 19H H 1a /0 x

where G stands for the solution to the differential equation for G where1
the source point is located in the atmosphere and Re denotes the real part
of the complex expression. Two forms of G and G are necessary for x1a 1b
located above and below x�, respectively, due to the discontinuity in the
derivative of G created by the delta function. The solutions of G which1 1
satisfy the above differential equation and boundary conditions are

L 	 �L w � x� w1 2
G � sinh sinh1a ž /ž /ž�K 	 L� L L�

w � x� w x 	 x1 2 Ž .�cosh cosh sinh � cosh 20ž / ž / ž /ž / ž //L L� L Lg L

and
L x� � x

Ž .G � G � sinh , 211b 1a ž /� L
where

w 	 w 	 �L w1 1 2
K � sinh � cosh sinhž / ž / ž /ž /L Lg L 	 L� L�

w 	 w w1 1 2 Ž .� cosh � sinh cosh 22ž / ž / ž /ž /L Lg L L�



SELF-AFFINE TIME SERIES: II 109

Ž .1�2 Ž .1�2and L � ��i and L� � � ��i . Performing the integration, van
Ž .Vliet et al. 1981 obtained

Ž .	 �L w �2 gL cosh w �L � 12 12Ž .S f � Re L tanh�T ž /½ Ž .ž 	 L� L� 	 cosh w �L1

gw w w gw �gL w1 1 1 1 1� �1 � tanh � � � �ž / ž / ž /	 2 L 	 	 L

w w 	 	 �L w1 1 2
�tanh tanh � tanhž / ž / ž /½5L L Lg 	 L� L�

�1	 w1 Ž .� 1 � tanh 23ž / 5ž / /Lg L

For very low frequencies, several approximations can be made:

w w w w1 1 2 2 Ž .tanh 
 , tanh 
 , 24ž / ž /L L L� L�

Ž . 2cosh w �L � 1 1 w1 1 Ž .
 . 252Ž .cosh w �L 2 L1

Ž .Reducing Eq. 23

1 1
Ž . Ž .S f � � . 26�T 2 2 2 21 �  � f � f0 0

This is the low-frequency Lorentzian spectrum observed in the Vostok
data. The crossover frequency as a function of the constants chosen for the
model is

g
Ž .f � . 270 Ž .w c� � w c��� 1 � gw �	1 2 1

At high frequencies the following approximations hold:

w w w1 1 2 Ž .tanh 
 , tanh 
 1, 28ž / ž /L L L�

Ž . 2cosh w �L � 1 1 w1 1 Ž .
 ; 292Ž .cosh w �L 2 L1
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then

1�2 1�21�21 2 gw c�	 g1 �1�2Ž . Ž .S f � � f . 30Tav ž /ž / ž /2 	 c���	 � w �cf1

This is the broad f�1�2 region observed in the power spectrum of the
temperature data and predicted based on the simpler one-layer model
exchanging heat with regions above and below. The high- and low-frequency
spectra meet at

1�31�3 4�3g 	 c���	 � c� w11�3 Ž .f � 4 311 ž / ž /ž /w �c 2 gw c�	 c���w1 1 2

Ž . Ž .
 1� 10 kyr . 32

This value agrees within an order of magnitude with that observed in the
Ž Ž ..Vostok data f 
 1� 2 kyr .

The three crossover time scales in the composite spectrum of Fig. 8 are
fundamental time scales of the climate system. The 1-month time scale for
the crossover between f�3�2 and f�1�2 behavior in continental stations
may be associated with the time scale for one complete Hadley or Walker
circulation. These circulations bring continental air masses in contact with
oceanic air masses and allow the variations in heat energy of continental
air masses to damp out more quickly through this connection to the ocean
heat sink.

For time scales greater than 1 month but less than 2 kyr, fluctuations in
the heat loss from the atmosphere by radiative cooling causes temperature
variations in the atmosphere which can be damped by the oceans. At
frequencies lower than 2 kyr, the time scale of vertical ocean mixing, the
atmosphere and the oceans are in thermal equilibrium. The oceans can no
longer absorb thermal fluctuations in the atmosphere resulting from fluc-
tuations in the radiative emission on this time scale. The variance in
temperature of the atmosphere and the oceans is then determined solely
by the radiation boundary condition. The fluctuating temperature at the
top of the atmosphere will result in a white-noise flux out of the atmo-
sphere�ocean system. The average temperature of the atmosphere and the
oceans at these time scales will be given by the sum of a white noise, a
Brownian motion. This is observed in the Vostok data between time scales
of 2 kyr and 40 kyr.

The power spectrum of temperature variations flattens out at frequen-
Ž .cies lower than f 
 1� 40 kyr as a result of a negative feedback mecha-

Ž .nism: as the coupled atmosphere and oceans warm up cool down due to
nonstationary fluctuations resulting from the random heat flux out into
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Ž .space, the system will radiate, on average, more less radiation, limiting
the variance at low frequencies. This can be described by a linear damping
equation for the global temperature difference from equilibrium:

��T 1
Ž . Ž .� � �T � � t , 33

� t 
 0

Ž .where 
 � 1�f and f is given by Eq. 27 . The temperature variations0 0 0
�T from this equation have a spectrum which is a Lorentzian with a
crossover time scale of 
 . This can be shown with Fourier transforms. The0

Ž .Fourier transform of Eq. 33 is given by

Ž .� 
Ž . Ž .�T  � . 34�1
 � i0

Ž . ² � Ž . � 2: Ž .The power spectrum S  � �T  is then given by Eq. 26 . Now�T
we must consider whether the observed low-frequency crossover time scale
of 40 kyr is consistent with the model prediction given by

Ž .w c� � w c��� 1 � gw �	1 2 1 Ž .
 � . 350 g

If we neglect the heat capacity of the atmosphere relative to that of the
ocean, this reduces to

c���w w w c���2 1 2 Ž .
 � � . 360 g 	

The first term is the time scale for radiative damping of the heat energy of
the coupled atmosphere�ocean system into space. The second term is the
time scale for transport of the heat energy of the ocean to the top of the
atmosphere where it can be radiated from clouds. If the time scale for one
of these processes is much larger than the time scale for the other, the
crossover time scale will be determined by that rate-limiting step. For
the Earth’s climate system, the transport of the oceans’ heat through the
atmosphere appears to be the rate-limiting step. This process takes a long
time because the atmosphere has a low heat capacity compared to the
oceans and is therefore a poor heat conductor. The time scale of radiative
damping is estimated to be 600 yr from the well-known constants listed in
Fig. 14. The time scale for vertical transport of the oceans’ heat through
the atmosphere can only be estimated to within an order of magnitude
since this time scale is linearly dependent on the average vertical diffusiv-
ity of the atmosphere. Only rough estimates are available for this parame-
ter. Estimates of 1 m2�s for this parameter have been given by Pleune
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Ž . Ž .1990 and Seinfeld 1986 . In order for the time scale of vertical advection
of the oceans’ heat through the atmosphere to be 40 kyr, a vertical
diffusivity of 0.1 m2�s is required, a factor of 10 lower but roughly in
agreement with the values quoted above.

Besides the frequency dependence of the power spectrum, the model we
have presented predicts that the distribution of temperature variations
from equilibrium obeys a Gaussian distribution. This is because the
stochastic term obeys a Gaussian distribution function and the tempera-
ture fluctuations are related to the stochastic term through a linear
transformation. By definition, the probability density function is only
defined for time scales in which the temperature-fluctuation time series
are stationary. Gaussian time series with power-law power spectra of the

Ž . �� Žform S f � f are stationary if � � 1 and nonstationary if � � 1 MT,
.Section 2.4 . Thus, a unique probability density function only exists for very

Ž .long time scales greater than 100 kyr where the power spectrum is
Ž .constant � � 0 and for the range of time scales in which the power

Ž . �� Ž .spectrum obeys S f � f with � � 0.5. Matteucci 1990 has computed
the probability distribution function for climatic variations at very long
time scales with the SPECMAP stack. He obtained a Gaussian distribu-

Ž .tion. Similarly, Janosi and Vattay 1992 have obtained a Gaussian distri-
bution with monthly temperature data sets of several decades length with
the annual variability removed.

Ž .Manabe and Stouffer 1996 have completed power-spectral analyses of
variations in local atmospheric temperature in control runs of a coupled
atmosphere�ocean�land surface model. They computed the power spec-
trum of temperature time series of each surface grid point and then
averaged the power spectra at equal frequency values, as in our observa-
tional power-spectral analyses. Their results are presented in Fig. 15. They
found different spectra for continental and maritime gridpoints. Maritime
gridpoints exhibited power-law power spectra for time scales of one month
to several hundred years with an exponent of close to �0.25. Continental
gridpoints, however, showed flat spectra up to time scales of about 100 yr,
in contrast to observations. Exploring the similarities and differences
between the approach in this paper, GCM results such as those of Manabe

Ž .and Stouffer 1996 , and observations should enable us to learn more
about this fundamental problem in earth science.

Time-series analyses of paleoclimatic data often exhibit a dominant peak
near 100 kyr as well as smaller periodicities near 40 kyr and 20 kyr
Ž .Thomson, 1990 . Although variations in the eccentricity of the Earth’s
orbit occur with this frequency, this variation is not expected to produce a
linear influence on climate change since this orbital variation results in
only a fraction of a percent change in the amount of radiation incident on
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FIG. 15. Average power-spectral density of atmospheric temperature above continents and
oceans for each grid point in the general circulation model calculations of Manabe and

Ž . �1 �2Stouffer 1996 . The straight line corresponding to f is included for comparison.

Ž .the Earth Hays et al., 1976 . Although there are nonlinear models that
predict a 100-kyr periodicity, it is generally agreed that the underlying

Ž .mechanism for this peak is not well understood Kerr, 1978 . The model
presented in this section leaves the question open as it does not predict
any periodicity. The only component of the system thought to have a

Ž .characteristic time scale of 100 kyr is the cryosphere Mitchell, 1976 .
Perhaps the cryosphere can produce a 100-kyr peak in the power spectrum
when forced by the background spectrum predicted by the model of this
paper. Studies incorporating the cryosphere into our model are an impor-
tant extension of our work that may lead to new insights into the nature of
the 100-kyr periodicity.
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FIG. 16. Power-spectral density of variations in the solar irradiance in 1987 and 1985 from
the ACRIM project as a function of frequency in hour�1 .

2.4. Variations in Solar Luminosity

We have applied the same model presented in Section 2.3 to variations
Žin the solar luminosity for time scales of minutes to months Pelletier,

.1996 . In Fig. 16 we present the power spectra estimated with the Lomb
periodogram of ACRIM solar irradiance data sampled during 1987 and
1985 plotted as a function of the frequency in hours�1. The same sequence
of power-law behavior is observed in these data as is observed in the
Vostok data. Large peaks appear at the orbital frequency of the satellite
and its harmonics. These peaks are an artifact of the spectral estimation. A
stochastic diffusion model of the turbulent heat transfer between the
granulation layer of the sun, modeled as a homogeneous thin layer with a
radiative boundary condition, and the rest of the convection zone, modeled
as a homogeneous thick layer with thermal and diffusion constants appro-
priate to the lower convection zone, predicts the same spectral form
observed in solar irradiance data. The time scales of thermal and radiative
equilibrium of the solar convection zone based upon thermal and diffusion
constants estimated from mixing-length theory match those observed in

Ž .the ACRIM data. Further details are discussed in Pelletier 1996 .
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2.5. Drought Hazard Assessment

One of the principal applications of time-series analysis is to drought
hazard assessment. A major question is whether ‘‘short-memory’’ models
are adequate or whether ‘‘long-memory’’ models such as self-affine noises

Ž .and motions are required Bras and Rodriguez-Iturbe, 1985 .
Since hydrologic droughts are phenomena requiring multiple years of

low flow, the frequency of occurrence will be affected by correlations in
the time series of discharge. We now illustrate how fractional noises can
be used to estimate drought frequencies. The use of fractional noises that

Ž .exhibit the Hurst phenomenon has been proposed by Booy and Lye 1989
for use in flood-frequency analysis. The goal of stochastic hydrology is to
generate synthetic time series of river discharge that accurately reproduce
hydrological time series. Based on evidence for the applicability of a
fractional noise with � 
 0.5, we generated synthetic time series with
two-parameter log-normal distributions that fit the historical records of
river discharge. We first discuss the techniques and results of drought-
frequency analyses for series with different log-normal distributions. Then
we discuss the results of a comparison between drought frequencies for the
Colorado river based upon a fractional noise with exponent of �1�2 and a

Ž Ž .. Ž .short-memory first-order autoregressive AR 1 model. An AR 1 model is
a time series in which each value is equal to a constant factor multiplied by
the last value in the series plus a random variable.

Techniques for generating synthetic log-normal fractional noises have
Ž .been discussed by Malamud and Turcotte MT, Section 4.2 . We utilize

synthetic noises with � � 0.5 and c � 0.2, 0.4, and 0.6. There is no uniquev
definition of a drought; several alternatives were discussed in a recent

Ž .drought assessment of the southwestern U.S. by Tarboton 1994 . Per-
haps the most straightforward definition is that proposed by Yevjevich
Ž .1967 . He defined a drought as any year or consecutive number of
years during which average annual streamflow is continuously below the
long-term mean annual runoff. The magnitude is the average deficit during
the drought. The principal drawback to this definition is that two 5-year
droughts separated by one wet year will only be recognized as 5-year
droughts even though the succession of droughts results in ten or eleven
years of critically low supply. In Fig. 17 we present the results of drought-
frequency analyses based on this definition of a drought. Each part is a

Ž .two-dimensional contour plot of the logarithm base 10 of the recurrence
interval in years of a drought of a given duration and magnitude, with the
magnitude normalized to the mean flow. Figures 17a, b, and c represent
coefficients of variation 0.2, 0.4, and 0.6, respectively. To construct each
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Ž .FIG. 17. Contours of the logarithm base 10 of the recurrence interval in years as a
Ž .function of drought duration and magnitude normalized to the mean annual flow for a

Ž . Ž . Ž .log-normal distribution with coefficient of variation a 0.2, b 0.4, and c 0.6.

figure we generated synthetic records of one million years in length and
searched them for drought occurrences.

In order to assess the importance of long-range persistence on the
likelihood of severe drought, we have compared a drought-frequency
analysis using a first-order autoregressive model for the Colorado river at
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FIG. 17. Continued.

Ž .Lees Ferry Kendall and Dracup, 1991 with a fractional noise model for
the same location. The synthetic time series were one million years in
length. We found that for droughts of ten years duration and small
magnitude, 100-year events according to the fractional noise model, the
difference in recurrence interval for the two models is a factor of 5. We
conclude that the presence of long-range persistence has a significant
effect on the likelihood of severe drought. The presence of long-range
persistence does not, however, appear to improve the ability to predict
future climatological and hydrological time series to any significant degree
Ž .Noakes et al., 1988 .

3. VARIATIONS IN SEDIMENTATION

3.1. Introduction

We now turn to porosity variations in sedimentary basins. We show that
these variations are self-affine motions in both the horizontal and vertical
directions. We show that the observed distributions can be reproduced
using a standard model for surface growth. We will further show that this
model is consistent with the observed variations and episodicity in sedi-
ment deposition.
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In the past decade many studies have documented the scale invariance
of porosity and density variations in sedimentary basins. Power-law power
spectra of vertical density and porosity well logs have been reported by

Ž . Ž .Hewett 1986 , Walden and Hosken 1985 , Pilkington and Todoeschuck
Ž . Ž . Ž . Ž .1990 , Todoeschuck et al. 1990 , Holliger 1996 , Shiomi et al. 1997 ,

Ž . Ž .Dolan et al. 1997 , and Pelletier and Turcotte 1996 . Tubman and Crane
Ž . Ž .1995 and Deshpande et al. 1997 have presented evidence for scale-
invariant horizontal variations in density and porosity from well logs and

Ž .seismic data. In addition, Dunne et al. 1995 presented evidence that the
topography of alluvial plains along the channel strike is also scale invari-
ant. They performed spectral analyses on fluvial microtopographic tran-
sects of an alluvial plain in Kenya. They obtained power spectra with
Ž . ��S k � k , where k is the wave number and � ranges from 1.5 to 2.

Ž .Based on his original observation, Hewett 1986 developed a fractal-based
interpolation scheme for determining the three-dimensional porosity varia-
tions in sedimentary basins using available well logs. The validity of the
interpolated structure was subsequently verified in a variety of ways. This
approach was applied to modeling groundwater migration by Molz and

Ž .Boman 1993 .

3.2. Stochastic Diffusion Model

Before considering the observed spectra further, we present a model for
the filling of sedimentary basins which will be predictive of both vertical
and horizontal porosity variations. We will refer to this model as the
stochastic diffusion model. The model is called that because the dynamic
rules of the model are equivalent to a diffusion process, as we will show.
At each time step, a site on a one-dimensional lattice is chosen at random.
During that time step, a unit of sediment is deposited on that site or on
one of its nearest neighbors, depending on which site has the lowest
elevation. This is the simplest model combining randomness and the
tendency for sediment to be deposited in low-lying areas of an alluvial
plain. The model is illustrated in Fig. 18. The cross-hatched block shows
the unit of sediment being added to the surface. In each case, an arrow
points towards the site upon which the unit of sediment will be deposited.
In Fig. 18a the chosen site has a lower elevation than either of its nearest
neighbors, so the sediment is deposited at the chosen site. In Fig. 18b one
of the nearest neighboring sites has a lower elevation and the sediment is
deposited at that lower site. In the case of a tie for the lowest elevation
between two or three sites, the site on which the sediment is deposited is
chosen randomly between the sites of the same elevation, as in Fig. 18c.
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FIG. 18. Illustration of the sediment deposition model. In each case a site is chosen
Ž .randomly the center of the three sites in each of the above pictures . The dashed block is the

unit of sediment being added to the surface. The arrows point toward the site upon which the
Ž .unit of sediment will be deposited. a The chosen site has a lower elevation than either of its

Ž .nearest neighbors, so the sediment is deposited at the chosen site. b One of the nearest
Ž .neighboring sites has a lower elevation and the sediment is deposited at that lower site. c In

the case of a tie for the lowest elevation between two or three sites, the site on which the
sediment is deposited is chosen randomly between the sites of the same elevation.

The local elevation is the total number of units of sediment that have been
deposited at the site.

Ž .This stochastic diffusion model was first analyzed by Family 1986 with
applications to the growth of atomic surface layers. He reported the results
of computer simulations which showed that the model produces scale-
invariant variations of the surface in space and time. He found that the
standard deviation, 	 , of the surface follows the relation

Ž . 1�2 1�4 Ž .	 L, T � L T , 37

where L is a length scale and T is a time scale. Surfaces with scale-
Ž . H a x H atinvariant standard deviations 	 L, T � L T have a power-law de-

Ž .pendence of the power-spectral density, S k , on wave number k of the
Ž . �2 H a x�1 Ž �2 .form S k � k i.e., � k for Ha � 1�2 and a power-lawx

Ž . �2 H at�1 Ž �3�2dependence on frequency of the form S f � f i.e., � f for
.Ha � 1�4 .t

An example of the topography produced by the stochastic diffusion
model with 1024 grid points is given in Fig. 19. The average dependence of
the power-spectral density on wave number from 50 independent simula-
tions is given in Fig. 20. The power spectrum is proportional to k�2 ,
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FIG. 19. A typical surface produced by the deposition model with 1024 grid points.

indicating that the surface is a Brownian motion. Other lattice sizes yield
similar results. The synthetic topography given in Fig. 19 is very similar to
the one-dimensional transect of Kenyan topography obtained by Dunne et

Ž . Ž .al. 1995 and plotted in Fig. 21. Hooke and Rohrer 1979 have mapped
the topographic profiles of alluvial fans perpendicular to the flow direction.
The synthetic profile is also strikingly similar to their alluvial fan profiles.

FIG. 20. Average power spectrum of the surfaces constructed from 50 independent simula-
tions on 1024 grid points as a function of the wave number k. The model surfaces are
Brownian motions.
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FIG. 21. One-dimensional transect of hillslope topography perpendicular to the channel
Ž .dip. Obtained with the use of laser altimetry. From Dunne et al. 1995 .

ŽIn Fig. 22 we plot the variations in surface elevation subtracted from
.the mean height of the landscape at the central site of our simulation

after the simulation has reached a dynamic steady state. In Fig. 23 we
present the average power spectrum of the difference from the mean
height of the central site produced in 50 simulations. The power spectrum

FIG. 22. Difference from the mean height of the central site of the lattice as a function
of time.



JON D. PELLETIER AND DONALD L. TURCOTTE122

FIG. 23. Average power spectrum of the difference from the mean height of the central site
for 50 independent simulations as a function of frequency f. The power spectrum is
proportional to f�3 �2.

is proportional to f�3�2. An alternative approach to the problem of
Ž .deposition and erosion is the random-walk model Tipper, 1983 . This

model considers the deposition and the erosion at a point to be a white
noise. The elevation of topography at that point is the sum of the
deposition and the erosion and therefore is a random walk with power

Ž . �2spectrum S f � f . The model of basin filling in which erosion and
deposition occur independently will be referred to as the random-walk
model. The random-walk model has been analyzed as a model for sedi-
mentary bed formation. The effect of directing the sediment to lower
elevations in our stochastic diffusion model is to preferentially fill low-lying
areas of the alluvial plain. This results in an anticorrelated sequence of
deposition and erosion: after an area has aggraded, it has a higher
elevation and a lower rate of future aggradation. Without the filling in of
low-lying areas, the horizontal surface would be a white noise. The
random-walk model, therefore, results in a very unrealistic alluvial plain
topography.

We can also include the effects of erosion in our stochastic diffusion
model. Although deposition generally occurs in topographic depressions,
tending to smooth out the floodplain, erosion is less consistent. Erosion
can downcut in a channel or, during a large flood, can lower alluvial ridges.
We have modified our simulation to include the effects of erosion by
choosing randomly at each time step whether to deposit or to erode
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sediment during that time step. The probability of deposition must be
greater than 0.5 in order to accumulate a sedimentary basin over time. We
have studied the modified stochastic diffusion model assuming that erosion
occurs preferentially on channel floors, randomly on the landscape, or
preferentially on alluvial ridges. In the simulations in which we assumed
erosion to occur preferentially on the channel floors, we have included an
erosion rule that takes away rather than deposits a unit of sediment at a
randomly chosen site or one of its nearest neighbors, depending on which
has the lowest elevation. We have also investigated rules that remove a

Žunit of sediment only from the chosen site to simulate random erosion on
.the floodplain and a rule that removes sediment from the chosen site or

one of its nearest neighbors, depending on which site is highest, to
simulate the preferential erosion of alluvial ridges. The exponents of the
power-law power spectra obtained in the stochastic diffusion model with-
out erosion are unchanged for any of these modified models with erosion.

In the simplest version of the stochastic diffusion model which includes
only deposition, the probability that a particle is added to the site is
proportional to 2 if both of a site’s neighbors have a higher elevation, is
proportional to 1 if only one of the neighbors is higher, and is zero if both
neighbors are lower. The model may be described mathematically with a
stochastic difference equation of the form

Ž . Ž . Ž .h � h � � h , h � � h , h , 38i , t�1 i , t i�1, t i , t i�1, t i , t

where h � h represents the most probable growth rate of thei, t�1 i, t
Ž .surface and � is the Heavyside function defined by � x, x � 1 if x � x0 0

or 0 if x � x . Averaging this equation over a time long compared to the0
time required to grow a single layer of unit height of sediment, the
equation for the average surface growth rate is

² : ² : ² : Ž .h � h � h � h � h � h 39i , t�1 i , t i�1, t i , t i�1, t i , t

² : ² : ² : Ž .� h � 2 h � h . 40i�1, t i , t i�1, t

This is a discrete version of the diffusion equation. Directing sediment to
lower elevations smooths out the surface and is equivalent to a diffusion

Ž .process. As recognized by Family 1986 , a continuous version of the
discrete model is provided by a one-dimensional diffusion equation with a
Gaussian white-noise term:

Ž . 2 Ž .� h x , t � h x , t
Ž . Ž .� D � � x , t . 412� t � x
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Ž .The term � x, t represents actual deposition and erosion. The assumed
Gaussian white noise is characterized by a mean, �, and a standard
deviation, 	 . If � � 0 there is no net deposition and sedimentation
balances erosion. For � � 0 there is net deposition and for � � 0 there is
net erosion. The ratio 	�� is a measure of the amplitude of fluctuations

Ž .in the sedimentation process. The diffusion term in Eq. 41 introduces
both spatial and temporal correlations in the sedimentation process not
present in the random-walk model.

3.3. Observations

We will next consider some observed spectra of the vertical variations of
porosity in sedimentary basins and compare them with the results we have

Žobtained. Our model for variations in paleotopographic elevation or
.stratigraphic position with time may be comparable to porosity variations

with depth since high porosity is often associated with low stratigraphic
Žposition such as in poorly sorted, sandy channel-fill deposits Curry and

.Curry, 1972; Coleman and Prior, 1982 . Porosity as a function of depth is
Žroutinely measured at equal intervals in formation well logs Hewett,

.1986 . As a specific example we have considered porosity logs from 15
wells in the Gulf of Mexico. One of the logs is plotted in Fig. 24. The wells
are drilled in a deltaic sedimentary environment with a few large, nearly

Ž .vertical faults Alexander, 1995 . The power spectra for these wells are
given in Fig. 25 as a function of the wave number k in m�1. At spatial

FIG. 24. Vertical porosity well log from the Gulf of Mexico.
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Ž . Ž .FIG. 25. a and b Power-spectral density of porosity as a function of wave number in
units of m�1 in 15 wells from the Gulf of Mexico. The spectra are offset so that they may be
placed on the same graph.

scales larger than 
 3 m, the power spectra are well approximated by a
power law. Below this scale the power-spectral density decreases sharply in
most of the wells. This decrease may be the result of a transition from

Žsecond-order heterogeneities dominated by variations in porosity within
.the larger genetic units to third-order heterogeneities which result from

the geometrical arrangements of individual depositional units. The transi-
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tion from second- to third-order heterogeneities occurs at the scale of
Ž .meters Allen and Allen, 1990 and is consistent with the 3-m scale of the

break observed in the power spectra. We estimate � from the slope of
the least-squares linear fits to the log�log plots at scales greater than 3 m.
The values of � obtained exhibit considerable variability from well to well.
However, the average � � 1.4 is close to the value 1.5 predicted by the
model. The standard deviation is 0.2.

Ž .Dolan et al. 1998 reported ranges of values of � from time-series
analyses of vertical density and porosity variations in well logs. They
obtained average power-spectral exponents � � 1.50, 1.62, and 1.46 using
three different numerical procedures for a cluster of ten wells in a fluvial
sedimentary environment. These values are in excellent agreement with

Ž .the ones we obtained and with our model. Holliger 1996 has reported
values of � from 1.2 to 1.4, somewhat smaller, but roughly consistent with
the values reported here.

We will next consider several observational studies relevant to the
horizontal variations of porosity in sedimentary basins. Direct measure-
ments of topography on relevant scales have been carried out by Dunne et

Ž .al. 1995 . These authors have performed power-spectral analyses of fluvial
microtopographic transects perpendicular to the fall line from two hill-
slopes obtained with laser altimetry from scales of 0.1 to 100 m. Their work
provides us with a direct test of our model for the topographic variations
of an alluvial plain. They obtained power spectra with a power-law depen-
dence on wave number as predicted. The exponents of the power spectra
had an average of � � 1.6 with a standard deviation of 0.2, somewhat
smaller than our model prediction of � � 2.

In addition to the power-spectral behavior of the surface in space and
time discussed above, the stochastic diffusion model also predicts a Gauss-
ian distribution of the surface elevation. This is true of any linear stochas-
tic differential equation with Gaussian noise. The microtopographic tran-

Ž .sects obtained by Dunne et al. 1995 enable us to test this prediction. In
Fig. 26 we present the distribution of elevations from the 15 profiles
published by the authors. The profiles were digitally scanned for the
analysis. Also plotted in Fig. 26 is the nonlinear least-squares fit to a
Gaussian distribution. A good fit is obtained.

We will next show that the distribution of producing oil and gas wells is
consistent with � � 2 horizontal porosity variations. Barton and Scholz
Ž .1995 have presented the spatial distribution of drilled wells and wells
showing hydrocarbons in the Denver and Powder River basins. These
basins evolved from sediment deposition in a meandering alluvial environ-

Ž .ment Berg, 1968 . Using the box-counting technique, Barton and Scholz
Ž .1995 found that the fractal dimensions for the drilled wells in the two
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FIG. 26. Probability density function for elevation of topographic transects from Dunne
Ž .et al. 1995 .

basins were 1.80 and 1.86 and that the fractal dimensions of wells showing
hydrocarbons were 1.43 and 1.49, respectively. After petroleum is gener-
ated and migrates from source rocks, it will move from sites of high
potential energy to sites of low potential energy. Hydrocarbons are found
in traps that are the crests of low-porisity caprock that have obstructed its

Ž .upward migration Allen and Allen, 1990 . The caprock will mimic the
floodplain relief at the time of its deposition. This is consistent with the
observation that hydrocarbons are often found in geometries which mimic
the topography of the alluvial plain at the time of deposition in a variety of

Žfluvial depositional environments such as meandering Curry and Curry,
. Ž . Ž1972 , deltaic Coleman and Prior, 1982 , and submarine fans Garcia,

.1981; Wilde et al., 1978 . A simple model for the horizontal spatial
distribution of hydrocarbons in a reservoir is one in which hydrocarbons
are assumed to be accumulated in all of the crests of the caprock above a
certain elevation.

The spatial distribution of wells showing hydrocarbons in the Powder
River and Denver basins is given in Fig. 27. We have set the width of each
basin to be 128 units so as to facilitate comparisons with a synthetic
reservoir constructed on a 128 
 128 grid. We analyzed the data with the
pair-correlation function, which we believe to be a better estimator of
correlations for point processes than box counting.

Ž .The two-dimensional pair-correlation function C r is defined as the
number of pairs of wells whose separation is between r and r � � r, per
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Ž . Ž .FIG. 27. Wells producing hydrocarbons in the a Powder River and b Denver basins.
Ž .From Barton and Scholz 1995 . Distance units are scaled such that the basin is 128 
 128.

Ž .unit area Vicsek, 1992 . The pairs are binned in logarithmically spaced
Ž . ��intervals � r. For a data set with scale-invariant clustering, C r � r ,

where � is related to the fractal dimension through D � 2 � � in two
Ž .dimensions Vicsek, 1992 . The pair-correlation function is commonly

employed in the analysis of diffusion-limited aggregation. However, studies
Ž .incorporating it in the earth sciences are rare. Kagan and Knopoff 1980

have applied it to the spatial clustering of earthquakes. Figure 28 shows
the pair-correlation function of the Denver and Powder River basin wells

FIG. 28. Pair-correlation function of the Powder River and Denver basins as a function of
the pair separation.
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FIG. 29. Synthetic reservoir constructed from a source and caprock with a two-dimensional
Brownian-motion topography constructed on a 128 
 128 grid where all the sites with
porosity greater than a fixed level are showing.

on a log�log plot. The least-squares fits to the correlation function yield
exponents of � � 0.59 for Powder River and � � 0.50 for the Denver
basin, implying D � 1.41 and D � 1.5, respectively. The results obtained
by the pair-correlation method are in close agreement with the results

Ž .obtained by Barton and Scholz 1995 using box counting.
To show that these correlation functions are consistent with a caprock

with Brownian-motion topography, we have constructed synthetic reser-
voirs where hydrocarbon traps are regions where the caprock elevation is
larger than a threshold value. In order to do this we synthesized two-
dimensional fractional Brownian motions on a 128 
 128 lattice with the
Fourier-filtering technique discussed in MT, Section 3.2. The threshold
value for showing hydrocarbons was chosen such that the resulting syn-
thetic reservoir had the same percentage of showing wells as the Denver

Ž .and Powder River basins about 5% . Figure 29 shows a synthetic reservoir
Ž .produced with � � 2.0 a Brownian motion . The synthetic reservoir shows

a degree of clustering similar to that of the Denver and Powder River
basins. In Fig. 30 we have plotted the pair-correlation functions for the
showing wells in synthetic reservoirs constructed with � � 2.5, 2.0, 1.5, and
1.0. The pair-correlation functions show a gradual decrease with decreas-
ing �. The synthetic reservoirs whose scaling exponents, � , most closely
match those of the Denver and Powder River basins are � � 2.0 and
� � 1.5. Although we cannot precisely determine the scaling exponent of
the porosity variations with this method, we conclude that � is close to 2,
consistent with the stochastic diffusion model.
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FIG. 30. Pair-correlation functions for synthetic reservoirs with caprocks constructed with
different values of �. The plots are offset so that they may be placed on the same graph.

Besides the pair-correlation function, two other fractal relations allow us
to infer Brownian-motion paleotopography from horizontal variations in

Ž .sedimentary basins. Agterberg 1982 has computed the fractal dimension
of the perimeter of sand isopach contours from the Lloydminster oil field
to be 1.3, close to the value of 1.25 measured for coastlines and topo-

Ž . Ž .graphic contours Turcotte, 1992 . Barton and Scholz 1995 have pre-
sented frequency�size distributions of oil pools. They found that the
cumulative number of oil fields has a power-law dependence on the

Ž . �1volume of the fields with exponent close to �1: N � V � V . Kondev
Ž .and Henley 1995 have related the length distribution of contour lengths

Ž .of Gaussian surfaces to the Hausdorff measure Ha. Pelletier 1997b has
shown that their results imply that the cumulative frequency�area distribu-
tion of areas enclosed by contours of a Brownian-motion surface is
Ž . �3�4N � A � A . Since volume and area for producing wells are observed

3�2 Ž .to be related by V � A Harbaugh et al., 1977 , our model of the
migration of hydrocarbon into regions with caprock topography above a

Ž . �9�8threshold elevation then predicts N � V � V , in close agreement
with the cumulative frequency�size distributions of Barton and Scholz
Ž . Ž .1995 . Pelletier 1997b has employed the same techniques to infer the
self-affinity of the top of the convective boundary layer from the size
distribution of cumulus cloud fields.
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3.4. Completeness of the Sedimentary Record

A problem related to topography and porosity variations in sedimentary
basins is the statistics of preserved sections. Stratigraphic sections are
formed by alternating periods of deposition and erosion or nondeposition.
The resulting stratigraphic section contains the deposited sediments that
were not subsequently eroded. Various stochastic models have been pro-
posed to explain aspects of sedimentary bed formation, including the
frequency distribution of bed thicknesses. Beginning with Kolmogorov’s

Ž .work Kolmogorov, 1951 , many studies have investigated random-walk
models of sedimentation. Random-walk models assume that the magni-
tudes of alternating depositional and erosional events are independent.
These models are applied by letting the typical episodes of deposition and
erosion define minimal units of a discrete time scale. The lengthy periods
of nondeposition, as well as any long intervals of deposition and erosion,
are treated as multiples of these units. There have been a number of

Ž .variants of Kolmogorov’s work: Schwarzacher 1975 described a process of
bed formation that results in a random walk on the integers, Vistelius and

Ž .Feigel’son 1965 allowed different types of sediment to be deposited,
Ž .Dacey 1979 considered both exponential and geometrical probability

distributions for the amount of sediment deposited and eroded, and
Ž .Strauss and Sadler 1989 have considered a continuous version of the

random-walk model. These models are generally considered to be success-
Žful at predicting observed bed-thickness distributions Strauss and Sadler,

.1989 .
Ž .Tipper 1983 was the first to apply the random-walk model to the

problem of stratigraphic completeness: given that deposited sediment is
often later eroded, how much of the depositional history is preserved in a

Ž .given stratigraphic section? Sadler 1981 obtained a solution to this
problem by investigating the dependence of sedimentation rate on the
time span over which the sedimentation rate was measured. If the depen-
dence of the sedimentation rate on time span can be assessed, then for a
single stratigraphic section, the ratio of the overall accumulation rate to

Žthe average rate at time span T is the completeness Sadler and Strauss,
. Ž .1990 . Sadler 1981 quantified the sedimentation rate, R, as a power-law

function for a time span, T , with exponent �0.65: R � T�0.65. McShea
Ž .and Raup 1986 have critically reviewed Sadler’s approach, indicating

possible biases in the data he compiled. Sadler interpreted the decreasing
sedimentation rate with time as the result of including longer and longer
hiatuses of erosion or nondeposition in the average at longer time inter-

Ž .vals. Plotnick 1986 introduced a fractal model for the length distribution



JON D. PELLETIER AND DONALD L. TURCOTTE132

FIG. 31. The nondimensional thickness of sediments h	�D in a sedimentary basin is given
as a function of nondimensional time t	 2�D for a sequence in which the ratio of the
standard deviation to the mean of sedimentation, 	��, is 0.1.

of stratigraphic hiatuses that is consistent with this interpretation and that
predicts a power-law dependence of sedimentation rate on time span.

Ž . Ž . Ž .Tipper 1983 , Strauss and Sadler 1989 , and Sadler and Strauss 1990
have addressed the issue of stratigraphic completeness with the random-
walk model of sedimentation. The random-walk model predicts a power-law

1 �1�2dependence of sedimentation rate on time with exponent � : R � T .2

The time history of sedimentation at a point based on our model is given
in Figs. 31 and 32. Figure 31 is the complete history of deposition and
erosion at a point in the basin. The time series of deposition and erosion is

Ž .represented by a fractional Brownian motion with power spectrum S f �
f�3�2. This fractional Brownian motion represents the elevation of total
height of sediment deposited locally in a fluvial sedimentary basin, super-
imposed on a constant rate of subsidence. The time series is scale invariant
in terms of the nondimensional sedimentary thickness, h	�D, and time,

2t	 �D; it is characterized by the single parameter 	��. If 	�� is small
the fluctuations in sedimentation rate are small compared to the subsi-
dence rate; if 	�� is large the fluctuations are large. For the example
given in Fig. 31, 	�� � 0.1. Figure 32 is produced from Fig. 31 by
removing any deposited sediment that is subsequently eroded. In the
‘‘staircase’’ plot of Fig. 32, beds are defined as a time interval of continu-
ous deposition, i.e., a series of consecutive time steps with increasing
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FIG. 32. For the model given in Fig. 31 the age of the sediments is given as a function of
depth. Only those sediments which are not later eroded are preserved.

elevations. Hiatuses are defined as periods in which no sediment is
preserved, i.e., a series of consecutive time steps with the same elevation.

We will next discuss the relationship between sedimentation rate and
Ž .time span with the stratigraphic model of Plotnick 1986 based on a

deterministic fractal distribution of hiatus lengths. The age of sediments in
this model is given as a function of depth in Fig. 33a. As illustrated, the

Ž .vertical segments beds are of equal thickness. The positions of the
transitions from beds to hiatuses are given by a second-order Cantor set.
Eight kilometers of sediments have been deposited in this model sedimen-
tary basin in a period of 9 Myr so that the mean rate of deposition is
Ž .R 9 Myr � 8 km�9 Myr � 0.89 mm�yr over this period. However, there

is a major unconformity at a depth of 4 km. The sediments immediately
above this unconformity have an age of 3 Ma and the sediments immedi-
ately below it have an age of 6 Ma. There are no sediments in the
sedimentary pile with ages between 3 and 6 Ma. In terms of the Cantor
set, this is illustrated in Fig. 33b. The line of unit length is divided into
three parts and the middle third, representing the period without deposi-
tion, is removed. The two remaining parts are placed on top of each other
as shown.

ŽDuring the first three million years of deposition the lower half of
. Ž .the sedimentary section the mean rates of deposition are R 3 Myr �

4 km�3 Myr � 1.33 mm�yr. Thus the rate of deposition increases as the
period considered decreases. This is shown in Figure 33c.
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FIG. 33. Illustration of a model for sediment deposition based on a devil’s staircase
Ž .associated with a second-order Cantor set. a Age of sediments T as a function of depth y.

Ž . Ž .b Illustration of how the Cantor set is used to construct the sedimentary pile. c Average
rate of deposition R as a function of the period T considered.

There is also an unconformity at a depth of two kilometers. The
sediments immediately above this unconformity have an age of 1 Ma and
sediments below have an age of 2 Ma. Similarly, there is an unconformity
at a depth of 6 km; the sediments above this unconformity have an age of
7 Ma and sediments below have an age of 8 Ma. There are no sediments in
the pile with ages between 8 and 7 Ma or between 2 and 1 Ma. This is
clearly illustrated in Fig. 33a. In terms of the Cantor set, Fig. 33b, the two
remaining line segments of length 1�3 are each divided into three parts
and the middle thirds are removed. The four remaining segments of length
1�9 are placed on top of each other as shown. During the periods 9 to 8, 7

Ž .to 6, 3 to 2, and 1 to 0 Myr, the rates of deposition are R 1 Myr � 2 km�
1 Myr � 2 mm�yr. This rate is also included in Figure 33c.

The rate of deposition clearly has a power-law dependence with respect
to the length of the time interval considered. The results illustrated in
Fig. 33 are based on a second-order Cantor set but the construction
can be extended to any order desired and the power-law results given in
Fig. 33c would be extended to shorter and shorter time intervals.
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2FIG. 34. Average rate of sedimentation, R��, as a function of time span, T	 �D, for the
sediment column of Fig. 32.

The sedimentation rate has been calculated in this way based on the
sedimentation history of Fig. 32. The results are plotted in Fig. 34 on a
logarithmic scale. The sedimentation rate has a power-law dependence on

�3�4 Ž .time span with exponent �3�4: R � T . Sadler and Strauss 1990
have shown that the random-walk model results in a power-law relation-
ship with exponent �1�2. Our result is a better fit to the data of Sadler
Ž .1981 , who has compiled measurements of fluvial sedimentation rates
from the geological literature for time scales of minutes to 100 million
years. His data are plotted in Fig. 35, where they are averaged in bin sizes
with an equal spacing on a logarithmic scale. In this plot we have not
included the data on time scales from 105 to 108 years since these time
scales include unconformities resulting from regressive and transgressive
events on active margins. Variations in sea level are beyond the scope of
the model and it would be inappropriate to compare the model to
sedimentation rates on those time scales. A least-squares linear fit to the
log�log plot yields a slope of �0.76. This result differs from the original

Ž .exponent of �0.65 quoted by Sadler 1981 since we have averaged the
data in logarithmically spaced bins so that each portion of the data has
equal weight in the least-squares fit. An exponent of �0.76 is consistent
with the stochastic diffusion model result given in Fig. 34.

These results can also be obtained from theoretical fractal relations.
Fractional Brownian motions have the property that the standard devia-
tion of the time series has a power-law dependence on time with a
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FIG. 35. Observed sedimentation rates as a function of time span from the data of Sadler
Ž .1995 . The data have been binned in equally spaced bins in log space. A least-squares linear

3 �3 �4fit to the logarithms of the data yields a slope of � , indicating that R � T .4

fractional exponent Ha, the Hausdorff measure: 	 � T H a as given by MT,
Eq. 20. The rate of change of the time series for a given time interval, T , is
then the sedimentation rate R � 	�T � T H a�1. The power-spectral expo-
nent of a time series and its Hausdorff measure are related by � � 2 Ha �
Ž .1 MT, Eq. 62 . For the random-walk model, � � 2, Ha � 1�2, and the

sedimentation rate is then R � T�1�2. For the stochastic diffusion model,
� � 3�2, Ha � 1�4, and R � T�3�4, in agreement with the numerical
results.

The dependence of sedimentation rate on time span continues up to
time scales of the Wilson cycle. On time scales of 105�108 years, transgres-
sive and regressive events give rise to alternating periods of deposition and

Ž .erosion as mentioned previously. Korvin 1992 found, using the SEDPAK
simulation package, that alternating periods of deposition and erosion
resulting from sea-level change, combined with the diffusive parameteriza-
tion of sediment transport of SEDPAK, resulted in a decreasing sedimen-
tation rate with increasing time span in the same way that channel avulsion
and diffusive sediment transport results in episodic sedimentation rates on
smaller time scales.

3.5. Bed Thicknesses

Working from our preserved-thickness history of Fig. 32, we will define a
bed as any consecutive sequence of time units at different depths. Con-



SELF-AFFINE TIME SERIES: II 137

FIG. 36. Cumulative frequency�length distribution of hiatuses, the number of hiatuses
longer than nondimensional hiatus length t 	 2�D, for synthetic sequences produced withh
the stochastic diffusion model.

versely, a hiatus is any consecutive sequence of time units with the same
depth. In this section we will present bed-thickness and hiatus-length
distributions and compare them with observations and with other models.

Ž .Plotnick 1986 presented the model for discontinuous sedimentation
based on a fractal distribution of hiatus lengths illustrated in Fig. 33. The
cumulative distribution of hiatus lengths, the number of hiatuses greater
than or equal to a length of time, T , produced by our model is plotted in
Fig. 36. In order to obtain an accurate curve, we generated 100 synthetic
preserved-thickness histories and accumulated the hiatus distributions in
order to obtain Fig. 36. The distribution is not fractal. This was at first
surprising since a fractal distribution of hiatuses was used to illustrate how
a power-law dependence of sedimentation rate on time span can occur.
However, in the model of Fig. 33 each bed had the same thickness. In
contrast, as we will show, the stochastic diffusion model of sedimentation
results in bed thicknesses with an exponential distribution. Therefore, our
observation of a scale-invariant sedimentation rate without a scale-
invariant distribution of hiatuses is not inconsistent with the model of
Fig. 33 since they result in different bed-thickness distributions.

The cumulative distribution of bed thicknesses generated by our model
is plotted in Fig. 37 for the four different values of 	�� indicated next to
each distribution. For synthetic depositional histories with a relatively
large 	��, such as 0.1, no deposition occurs during most of the history.
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FIG. 37. Cumulative frequency�thickness distribution of nondimensional bed thicknesses
for synthetic sediment columns with 	�� � 0.1, 0.01, 0.001, and 0.0003. The distributions are
exponential.

The result is a small number of beds with a very skewed distribution. For
smaller ratios, more thick beds appear in the record. The straight-line
trends of the distributions on a log-linear axis indicate that the cumulative
bed-thickness distributions are exponential. The noncumulative distribu-
tion is also exponential since the cumulative distribution is the integral of
the noncumulative distribution. Exponential bed-thickness distributions

Ž .are common in stochastic models of sedimentation Dacey, 1979 . Despite
reported conclusions that stochastic models of sedimentation, including
those that generate exponential bed-thickness distributions, accurately

Ž .predict observed bed-thickness distributions Mizutani and Hattori, 1972 ,
we are not aware of any model which predicts the commonly observed
log-normal distribution. This may not be a fundamental weakness of the
bed formation models that have been proposed to date. Another possibility

Ž .has been suggested by Drummond and Wilkinson 1996 . They have
argued that the observation of log-normal distributions is an artifact
resulting from unrecognized or unrecorded small strata. They propose that
exponential distributions are consistent with the data if the data for the
frequencies of the smallest strata are considered incomplete and not
considered in the distribution fitting. This is consistent with the conclusion

Ž .of Muto 1995 who has presented the cumulative frequency�thickness
distribution of four large turbidite data sets from Japan. He found that an
exponential distribution best fit the data. However, power-law distributions
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FIG. 38. Cumulative frequency�thickness distribution of bed thicknesses of deep-sea se-
Ž . Ž . Ž .quences from a Ra Stua, b Castagne, and c Cismon Valley, Italy published in Claps and

Ž .Masetti 1994 . The coefficients in the exponential distributions determined by a least-squares
fit of the logarithm of the bed number to the bed thickness for the largest forty beds were
�0.052, �0.166, and �0.252, showing an increasing trend with sedimentation rate consistent
with the model behavior.

have also been persuasively argued for the distribution of turbidite beds
Ž .Rothman et al., 1993 .

In Fig. 37, synthetic sedimentation histories with larger values of sedi-
mentation rate, 	��, have a more skewed distribution or a steeper slope
on a log-linear scale. This is consistent with the dependence of skew on
sedimentation rate observed in deep-sea sequences in Italy by Claps and

Ž .Masetti 1994 . These authors published bed-thickness data from three
formations in Italy: Ra Stua, Castagne, and Cismon Valley. The sedimen-
tation rates for a 1-Ma time scale have been estimated to be 2.5, 1.7, and
0.6 cm�kyr, respectively, for these sections. In Fig. 37 we found that basins
which filled slowly had bed-thickness distributions that were more skewed
than those in basins which filled more quickly. The cumulative bed-
thickness distributions for these sections based on data that were digitally

Ž .scanned from Claps and Masetti 1994 are presented in Fig. 38. The
model prediction that the skew of the bed-thickness distributions increases

Ž . Ž . Ž .from the a Ra Stua section to the b Castagne and c Cismon Valley
sections is consistent with the data.
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4. VARIABILITY OF THE EARTH’S MAGNETIC FIELD

4.1. Variations of the Dipole Moment

As our third and final example we consider the time series of the Earth’s
magnetic field. Paleomagnetic studies show clearly that the polarity of the

Ž .magnetic field has been subject to reversals. Kono 1971 has compiled
paleointensity measurements of the magnetic field from volcanic lavas for
0�10 Ma. He concluded that the distribution of paleointensity is well
approximated by a symmetric binormal distribution with mean 8.9 

1022 Am2 and standard deviation 3.4 
 1022 A � m2. One normal distribu-
tion is applicable to the field when it is in its normal polarity and the other
is applicable when it is in its reversed polarity.

We have utilized three data sets for computing the power spectrum of
the dipole moment of the Earth’s magnetic field. They are archeomagnetic

Ž .data for time scales of 100 yr to 8 kyr from Kovacheva 1980 , marine
sediment data from the Somali basin for time scales of 1 kyr to 140 kyr

Ž .from Meynadier et al. 1992 , and marine sediment data from the Pacific
and Indian Oceans from time scales of 20 kyr to 4 Myr from Meynadier et

Ž . Ž .al. 1994 . The data were published in table form in Kovacheva 1980 and
Ž .obtained from L. Meynadier personal communication, 1995 for the

Ž .marine sediment data in Meynadier et al. 1992 and Meynadier et al.
Ž .1994 . Marine sediment data are accurate measures of relative paleoin-
tensity but give no information on absolute intensity. In order to calibrate
marine sediment data, the data must be compared to absolute paleointen-
sity measurements from volcanic lavas sampled from the same time period

Ž .as the sedimentary record. Meynadier et al. 1994 have done this for the
composite Pacific and Indian Ocean data set. They have calibrated the
mean paleointensity in terms of the virtual axial dipole moment for

22 2 Ž .0�4 Ma as 9 
 10 A � m Valet and Meynadier, 1993 . This value is
Ž .consistent with that obtained by Kono 1971 for the longer time interval

up to 10 Ma. Using this calibration, we calibrated the Somali data with the
time interval 0�140 ka from the composite Pacific and Indian Ocean data

Ž .set. The data from Meynadier et al. 1994 are plotted in Fig. 39 as a
function of age in Ma. The last reversal at approximately 730 ka is clearly
shown. We obtained the power spectrum of each of the time series using

Ž .the Lomb periodogram Press et al., 1992 . The resulting spectra are given
in Fig. 40. The composite sediment record from the Pacific and Indian

Ž .Oceans is plotted up to the frequency 1� 25 kyr . Above this time scale
good synchroneity is observed in the Pacific and Indian Ocean data sets
Ž .Meynadier et al., 1994 . This suggests that nongeomagnetic effects such as
variable sedimentation rate are not significant in these cores above this
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Ž .FIG. 39. Paleointensity of the virtual axial dipole moment VADM of the Earth’s magnetic
Ž .field with reversed polarity data given by negative values inferred from sediment cores for

Ž .the past 4 Ma from Meynadier et al. 1994 .

FIG. 40. Power-spectral density of the geomagnetic field intensity variations estimated from
Ž .the Lomb periodogram of sediment cores from Meynadier et al. 1992 and Meynadier et al.

Ž . Ž .1994 and archeomagnetic data from Kovacheva 1980 . The power-spectral density S is
given as a function of frequency f for time scales of 100 yr to 4 Myr.
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Ž . Ž .time scale. From frequencies of 1� 25 kyr to 1� 1.6 kyr we plot the
power spectrum of the Somali data. For time scales of 1.6 kyr to the
highest frequency we plot the power spectrum of the data of Kovacheva
Ž .1980 . A least-squares linear regression to the data yields a slope of
�1.09 over 4.5 orders of magnitude. This indicates that the power spec-
trum is well approximated as 1�f on these time scales.

The power spectrum of secular geomagnetic intensity variations has
been determined to have a 1�f 2 power spectrum between time scales of 1

Ž .and 100 years Currie, 1968; Barton, 1982; Courtillot and Le Mouel, 1988 .
Ž .This is consistent with the analysis of McLeod 1992 , who found that the

first difference of the annual means of geomagnetic field intensity is a
white noise since the first difference of a random process with power
spectrum 1�f 2 is a white noise. Our observation of 1�f power-spectral
behavior above time scales of approximately 100 years together with the

Ž . Ž .results of Currie 1968 and Barton 1982 suggests that there is a crossover
from 1�f to 1�f 2 spectral behavior at a time scale of approximately
100 years.

4.2. Reversal Record

We will now show that the statistics of the reversal record are consistent
with those of a binormal 1�f noise paleointensity record which reverses
each time the intensity crosses the zero value. We will compare the
polarity length distribution and the clustering of reversals between syn-
thetic reversals produced with 1�f noise intensity variations and the

Ž .reversal history according to Harland et al. 1990 and Cande and Kent
Ž .1992a, 1995 .

First we consider the polarity length distribution of the real reversal
history. The polarity length distribution calculated from the chronology of

Ž .Harland et al. 1990 is given as the solid line in Fig. 41. The polarity
length distribution is the number of interval lengths longer than the length
plotted on the horizontal axis. A reassessment of the magnetic anomaly

Ž .data has been obtained by Cande and Kent 1992a, 1995 . The polarity
length distribution of their time scale normalized to the same length as

Ž .the Harland et al. 1990 time scale, is presented as the dashed curve in
Fig. 41. The two distributions are nearly identical. These plots suggest that
the polarity length distribution is better fit by a power law for large
polarity lengths than by an exponential distribution, as first suggested by

Ž . Ž .Cox 1968 . The same conclusion has been reached by Gaffin 1989 and
Ž .Seki and Ito 1993 .
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FIG. 41. Cumulative frequency�length distribution of the lengths of polarity intervals from
Ž . Ž . Ž . Žthe time scale of Harland et al. 1990 solid curve , Cande and Kent 1992a, 1995 dashed

. Ž .curve , and the Cande and Kent 1992a, 1995 time scale from C1 to C13 with cryptochrons
Ž .included dashed-dotted line .

The third curve, plotted with a dashed-dotted line, represents the
polarity length distribution estimated from the magnetic time scale be-
tween C1 and C13 with ‘‘cryptochrons’’ included and scaled to the length

Ž .of the Harland et al. 1990 time scale. Cryptochrons are small variations
recorded in the magnetic anomaly data that may either represent varia-

Žtions in paleomagnetic intensity or short reversals Blakely, 1974; Cande
.and Kent, 1992b . Cryptochrons occur with a time scale at the limit of

temporal resolution of the reversal record from magnetic anomalies of the
sea floor. The form of the polarity length distribution estimated from the
record between C1 and C13 including cryptochrons is not representative of
the entire reversal history because of the variable reversal rate which
concentrates many short polarity intervals in this time period. However,
this distribution enables us to estimate the temporal resolution of the
reversal-record history. The distribution estimated from C1 to C13 has
many more short polarity intervals than those of the full reversal history
starting at a reversal length of 0.3 Myr. Above a time scale of 0.3 Myr the
magnetic time scale is nearly complete. Below it many short polarity
intervals may be unrecorded.

To show that this distribution is consistent with binormal 1�f noise
intensity variations, we have generated synthetic Gaussian noises with a
power spectrum proportional to 1�f , a mean value of 8.9 
 1022 A � m2,

22 2 Ž .and a standard deviation of 3.4 
 10 A � m as obtained by Kono 1971 ,
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FIG. 42. A 1�f noise with a normal distribution with mean of 8.9 and standard deviation of
3.4 
 1022 Am2 representing the geomagnetic field intensity in one polarity state.

representative of the field intensity in one polarity state. These synthetic
noises were generated using the Fourier-domain filtering technique dis-
cussed in MT, Section 3.2. An example is shown as Fig. 42. In order to
construct a binormal intensity distribution from the synthetic normal
distribution, we inverted every other polarity interval to the opposite
polarity starting from its minimum value below the zero intensity axis and
extending to its next minimum below the zero. The result of this procedure
on the Gaussian, 1�f noise of Fig. 42 is presented in Fig. 43. Its irregular
polarity lengths are similar to those in the marine sediment data of Fig. 39.

The operation of reversing the paleomagnetic intensity when it crosses
the zero intensity value is consistent with models of the geodynamo as a
system with two symmetric attracting states of positive and negative
polarity such as the Rikitake disk dynamo. Between reversals, the geomag-
netic field fluctuates until a fluctuation large enough to cross the energy

Ž .barrier into the other basin of attraction occurs. Kono 1987 has explored
the statistical similarity between the Rikitake disk dynamo and the distri-
bution of paleointensity. Our construction of the binormal 1�f noise is
consistent with his model.

We have computed the distributions of lengths between successive
reversals for twenty synthetic noises scaled to length 169 Ma, the length of
the reversal chronology, and have averaged the results in terms of the
number of reversals. The results are plotted as the solid curve along with

Ž . Ž .the Harland et al. 1990 time scale dashed curve in Fig. 44. The dots in
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FIG. 43. Binormal 1�f noise constructed from the normal 1�f noise of Fig. 42 as described
in the text.

FIG. 44. Cumulative frequency�length polarity interval distributions from the Harland et
Ž .al. 1990 time scale and that of the binormal 1�f noise model of intensity variations. The

Ž .distribution from the Harland et al. 1990 time scale is the dashed curve. The solid line is the
average cumulative distribution from the 1�f noise model. The dotted lines represent the
minimum and maximum reversal-length distributions for 20 numerical experiments, thereby
representing 95% confidence intervals.



JON D. PELLETIER AND DONALD L. TURCOTTE146

FIG. 45. Cumulative frequency�length polarity interval distributions for the 1�f noise
Ž .model of intensity variations shown in the middle, the same as that in Fig. 44 and for

intensity variations with power spectra proportional to f�0 .8 and f�1 .2. This plot illustrates
that the polarity length distribution is very sensitive to the form of the power spectrum,
allowing us to conclude that the agreement between the model and the observed distribution
in Fig. 43 is unique to 1�f noise intensity variations.

Fig. 44 are the maximum and minimum values obtained in the twenty
synthetic reversal chronologies for each reversal rank, thus representing
95% confidence intervals. The shape of the synthetic polarity length

Ž .distribution is very similar to the Harland et al. 1990 time scale. The
Ž .synthetic polarity length distribution matches the Harland et al. 1990

time scale within the 95% confidence interval over all time scales plotted
except for the Cretaceous superchron, which lies slightly outside of the
95% confidence interval, and reversals separated by less than about
0.3 Myr. The overprediction of very short reversals could be a limitation of
the model or a result of the incompleteness of the reversal record for short
polarity intervals. As mentioned, the temporal resolution of the magnetic
time scale inferred from magnetic anomalies is approximately 0.3 Myr. We
conclude that the polarity length distribution produced from binormal 1�f
intensity variations is consistent with the observed polarity length distribu-
tion for all time scales for which the reversal record is complete.

We next consider whether the agreement illustrated in Fig. 44 is unique
to 1�f noise. We have computed polarity length distributions using binor-
mal intensity variations with power spectra f�0.8 and f�1.2. These results,
along with the 1�f result from Fig. 44, are given in Fig. 45. The shape of
the polarity length distribution is very sensitive to the exponent of the
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power spectrum. A slight increase in the magnitude of the exponent results
in many more long polarity intervals than with 1�f noise. We conclude
that the agreement in Fig. 44 between the synthetic reversal distribution
and the true reversal history is unique to 1�f noise and provides strong
evidence that the dipole moment has 1�f behavior up to time scales of
170 Myr.

A binormal, 1�f noise geomagnetic field variation is consistent with the
Ž .qualitative results of Pal and Roberts 1988 , who found an anticorrelation

between reversal frequency and paleointensity. This anticorrelation is
evident in the synthetic 1�f noise of Fig. 43. During the time intervals of
greatest average paleointensity the reversal rate is lowest.

In addition to the broad distribution of polarity lengths, the reversal
history is also characterized by a clustering of reversals. This behavior has
been quantified with the reversal rate. The reversal rate has been relatively
high from 0�20 Ma and has decreased gradually going back in history
to the Cretaceous superchron. An alternative approach to quantifying
the clustering of reversals is with the pair-correlation function. The pair-

Ž .correlation function C t is the number of pairs of reversals whose
Ž .separation is between t and t � � t, per unit time Vicsek, 1992 . The

pair-correlation function for a set of points can be compared to that for a
Poisson process to detect nonrandom clustering. The pair-correlation
function analysis is more appropriate for comparison of the reversal
history to the synthetic reversal history generated by a stochastic model
since a stochastic model cannot predict behavior in time, such as when the
reversal rate is large or small. However, a stochastic model may accurately
reflect the extent to which small polarity intervals are followed by small
polarity intervals and long intervals by long intervals as quantified with the
pair-correlation function.

The pair-correlation function of reversals according to the Harland et al.
Ž . Ž .1990 and Cande and Kent 1992a, 1995 reversal histories is shown in
Fig. 46 as filled and unfilled circles, respectively. Also presented in
Fig. 46 is the pair-correlation function for a synthetic reversal data set

Ž .based on binormal 1�f noise dipole moment variations boxes and for a
Ž .Poisson process triangles . The functions are offset so that they may be

placed on the same graph. The Poisson process was constructed with 293
Ž .points, the same number of reversals as the Harland et al. 1990 time

scale, positioned with uniform probability on the interval between 0 and
170 Ma. The Poisson process yields a correlation function independent of
t. The real and synthetic reversal histories variations exhibit significant
clustering with more pairs of points at small separation and fewer at large
separations than for a Poisson process. Straight-line fits of the form
Ž . ��C t � t were obtained. The purpose of this was to show that similar
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FIG. 46. Pair-correlation function of the reversal history according to the Harland et al.
Ž . Ž . Ž . Ž .1990 time scale filled circles , Cande and Kent 1992a, 1995 open circles , synthetic

Ž .reversals produced from 1�f noise model of intensity variations boxes , and a Poisson
Ž .process triangles . The real and synthetic reversals exhibit similar nonrandom clustering. The

data sets are offset.

clustering is observed in the real and synthetic reversals. The exponents of
Ž . Ž .the Harland et al. 1990 , Cande and Kent 1992a, 1995 , and synthetic

reversals are �0.39, �0.31, and �0.42, respectively, indicating close
agreement between the model and real reversals.

4.3. Inclination and Declination Data

Power-spectral analyses of inclination and declination data have also
been carried out. We obtained time-series data for inclination and declina-
tion from lake sediment cores in the Global Paleomagnetic Database
Ž .Lock and McElhinney, 1992 . The core with the greatest number of data

Ž .points was from Lac du Bouchet Thouveny et al., 1990 . The inclination
data from this data set are plotted in Fig. 47. The power spectra of the
inclination and declination at Lac du Bouchet estimated with the Lomb
Periodogram are presented in Fig. 48. We associate the spectra with a flat

Ž .spectrum below a frequency of f 
 1� 3 kyr and a constant spectrum
Ž . Ž .above a frequency of f 
 1� 500 yr . From frequencies of f 
 1� 3 kyr to

Ž .f 
 1� 500 yr the inclination and declination are Brownian motions with
Ž . �2S f � f . Spectral analyses of inclination data from five other sediment

cores were calculated. These spectra are presented in Fig. 49. The spectra
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FIG. 47. Magnetic field inclination inferred from the Lac du Bouchet sediment core
Ž .Thouveny et al., 1990 .

Žcorrespond, from top to bottom, to cores from Anderson Pond Lund and
. Ž . ŽBanerjee, 1985 , Bessette Creek Turner et al., 1982 , Fish Lake Verosub

. Ž .et al., 1986 , Lake Bullenmerri Turner and Thompson, 1981 , and Lake
Ž .Keilambete Barton and McElhinny, 1981 . Since the data sets have fewer

points, there is more uncertainty in the spectra and they are characterized

FIG. 48. Power spectra of inclination and declination from the Lac du Bouchet sediment
core. The declination spectrum is offset from the inclination spectrum so that they may be
placed on the same graph.
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Ž .FIG. 49. Power spectra of inclination from the following locations, top to bottom: 1
Ž . Ž . Ž . Ž .Anderson Pond, 2 Bessette Creek, 3 Fish Lake, 4 Lake Bullenmerri, and 5 Lake

Keilambete. The spectra are offset to place them on the same graph.

by greater variability between adjacent frequencies. The spectra have the
same form, within the uncertainty of the spectra, as that associated with
the spectra from Lac du Bouchet. These results suggest that 3 kyr and
500 yr are characteristic time scales of geodynamo behavior. Variations in
inclination and declination are associated with changes in the nondipole
components of the field. Therefore, the autocorrelation or decay time of
the quadrupole moment is the maximum time scale for correlated fluctua-
tions of inclination and declination to occur. The autocorrelation time of

Ž .the quadrupole moment has been estimated by McLeod 1996 to be
1.6 kyr. This is within a factor of 2 of the 3-kyr time scale above which
variations in inclination and declination are observed to be uncorrelated in
the spectra of Figs. 48 and 49.

Many analyses of variations in paleointensity of the Earth’s magnetic
field concentrate on identifying characteristic time scales of variation.
Many such characteristic time scales have been identified. Valet and

Ž .Meynadier 1993 suggested, based on the same sediment core data ana-
lyzed in this paper, that the Earth’s magnetic field regenerates following a
reversal on a time scale of a few thousand years and then decays slowly on
a time scale of 0.5 Myr before the next reversal. They termed this an
‘‘asymmetric saw-tooth’’ pattern. More recent data have shown that the
‘‘asymmetric saw-tooth’’ is not a robust pattern. Longer cores show a slow
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Ž .decay preceding a reversal to be rare Tauxe and Hartl, 1997 . Moreover,
Ž .Laj et al. 1996 have shown that the magnetic field does not always

Ž .regenerate quickly after a reversal. Thibal et al. 1995 have quantified the
rate of decrease in field intensity preceding a reversal and found it to be
inversely proportional to the length of the polarity interval. The authors
concluded from this that the length of the reversal was predetermined.
Such behavior is not indicative of a predetermined polarity length. This
can be concluded by considering the null hypothesis that variations in the
field are characterized by any stationary random process. By definition, a
stationary time series has a variance which is independent of the length of
the series. The average rate of change of the time series over a time
interval will then be a constant value divided by the interval of time, i.e.,
inversely proportional to time interval. Therefore, any stationary random

Ž .function satisfies the relationship that Thibal et al. 1995 observed.
In the power-spectral analyses of geomagnetic variations inferred from

Ž . Ž .sediment cores performed by Lund et al. 1988 , Meynadier et al. 1992 ,
Ž . Ž .Lehman et al. 1996 , and Tauxe and Hartl 1997 , dominant periodicities

in the record were identified and proposed as characteristic time scales of
geodynamo behavior. However, it must be emphasized that any finite
length record will exhibit peaks in its power spectrum even if the underly-
ing process is random such as a 1�f noise. Periodicity tests such as those

Ž .developed by Lees and Park 1995 need to be applied to data in order to
assess the probability that a peak in a spectrum is statistically significant.

Ž .The periodicity tests developed by Lees and Park 1995 are especially
valuable because they do not depend on a particular model of the
stochastic portion of the spectrum. Some of the periodicity tests that have
been used in the geomagnetism literature assume forms for the stochastic
portion of the spectrum that are not compatible with the 1�f process we

Ž .have identified. See Mann and Lees 1996 for an application of these
techniques to climatic time series.

It is generally believed that secular geomagnetic variations are the result
of internal dynamics while longer time-scale phenomena such as variations
in the reversal rate are controlled by variations in boundary conditions at

Ž . Ž .the core�mantle boundary CMB McFadden and Merrill, 1995 . How-
ever, our observation of continuous 1�f spectral behavior for time scales
of 100 yr to 170 Myr suggests that a single process controls variations in
geomagnetic intensity over this range of time scales. In Section 4.4 we
consider a model for geodynamo behavior which reproduces the 1�f dipole
moment variations over a wide range of time scales and exhibits many of
the other features of geomagnetic variability we have identified.
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4.4. Model for Geomagnetic Variations

There has been great interest in 1�f noise processes in the physics
Ž .literature for many years Weissman, 1988 . One model of 1�f noise is a

stochastic process composed of a superposition of modes with exponential
decay characterized by different time constants. The time constant for a

Ž .stochastic process is defined through its autocorrelation function a 
 . For
a stochastic process with a single time constant 
 , the autocorrelation0

Ž . �
 �
 0function is given by a 
 � e . The power spectrum of such a process
is, by the Weiner�Khinchine theorem, the Fourier transform of the
autocorrelation function:


 0Ž . Ž .S f � . 422Ž .1 � 2� f

Ž Ž .This is a Lorentzian spectrum with a Brownian-motion behavior S f �
�2 .f for time scales small compared to 
 and white-noise behavior0
Ž Ž . .S f � constant above the characteristic time constant. If the stochastic
process is composed of a superposition of modes with time constants

Ž . �1 Ž .following a distribution D 
 � 
 , where the D 
 �
 is the net0 0 0 0
variance contributed by modes between 
 and 
 � �
 , then a 1�f0 0 0

Žspectrum results over a range of frequencies van der Ziel, 1950; Weiss-
.man, 1988 . Such a distribution of exponential time constants has been

Ž .documented for the Earth’s magnetic field by McLeod 1996 .
Ž .McLeod 1996 calculated the autocorrelation of each degree of the

geomagnetic field during the last 80 years. The autocorrelation functions
that he computed had an exponential dependence on time with degree-
dependent time constants 
 � n�2 . This behavior is consistent with a0

Ž .diffusion process. McLeod 1996 attributed this autocorrelation structure
to a simple model of the geomagnetic field in which the field was stochasti-
cally generated with a balance between field regeneration and diffusive
decay across a magnetic boundary layer. One way to model such a
stochastic diffusion process is with a two-dimensional diffusion equation
driven by random noise:

� Bz 2 Ž . Ž .� D� B � � x , y , t , 43z� t

where B is the axial component of the magnetic field at a point inside thez
Ž .core and � x, y, t is a Gaussian white noise representing random amplifi-

cation and destruction of the field locally by dynamo action. To this
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Ž .equation we add a term equal to c p � B :z, t o t

� Bz 2 Ž . Ž . Ž .� D� B � � x , y , t � c p � B , 44z z , t o t� t

where c is a constant, B is the dipole moment integrated over allz, t o t
space, and p is �1 if the dipole moment of the field outside the
core�mantle boundary is positive and �1 if the dipole moment outside the
core�mantle boundary is negative. The effect of this term is to create two

Ž .basins of attraction polarity states within which the dipole field fluctuates
around an intensity of �1 or �1 until a fluctuation large enough occurs to
cross the barrier to the other basin of attraction. This term could be the
result of a conservation of magnetic energy for the combination of the
poloidal and toroidal fields such that when the poloidal dipole field
intensity is low the toroidal field intensity, which is unobservable outside

Ž .the core and not explicitly modeled in Eq. 44 , is high and dynamo action
is intensified, repelling the poloidal field away from a state of low dipole
intensity.

In our model the core is modeled as a two-dimensional circular region
Ž .of uniform diffusivity the fluid outer core surrounded by an infinite

region with small but finite diffusivity and the boundary condition that Bz
approach zero as r approaches zero, where r is the radial distance from
the center of the earth. The diameter of the inner circular region is the
diameter of the core�mantle boundary.

This model has been simulated by computer using finite differencing of
the model equation on a two-dimensional lattice. It has been studied in
terms of the distribution of values and power spectrum of the dipole
moment and the power spectrum of the angular deviation from the dipole
field. The dipole field from the simulation is plotted in Fig. 50. The field
clearly undergoes reversals with a broad distribution of polarity interval

Žlengths. Fig. 51 represents the dipole distribution of 10 simulations solid
. Ž .curve along with the fit to a binormal distribution dashed curve . A

binormal distribution fits the data well. The slight asymmetry is the result
of this particular model run spending slightly more time in the negative
polarity state than in the positive polarity state. Model outputs were
generated which showed asymmetry in the other direction.

The average power spectrum of time series of the dipole field from 25
simulations is presented in Fig. 52. The spectrum has a low-frequency

Ž . �1 Ž . �2spectrum S f � f and a high-frequency spectrum S f � f . This is
identical to the spectrum observed in sediment cores and historical data
discussed earlier in the chapter. The crossover time scale is the diffusion
time across the diameter of the core, estimated to be between 103 yr
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FIG. 50. Dipole moment produced by the model for geomagnetic variations normalized to
the average dipole moment, set to be 1. The field exhibits reversals with a broad distribution
of polarity interval lengths and a variable reversal rate decreasing at later times in the
simulation.

ŽFIG. 51. Distribution of magnetic field according to ten simulations of the model solid
. Ž .curve and a binormal distribution fit to the data dashed line . The binormal distribution fits

the data well.
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Ž .FIG. 52. Average power spectrum of the mean value of the magnetic field dipole field
Ž . �1from 25 simulations. The spectrum has a low-frequency portion with S f � f and a

Ž . �2high-frequency region S f � f . The same spectrum is observed in geomagnetic intensity
from sediment cores and historical data.

Ž . 4 Ž .Harrison and Huang, 1990 and 10 yr McLeod, 1996 . These values are
somewhat higher than the time scale of 102 yr identified as the crossover
in the sediment core and historical data.

Figure 53 shows the average power spectrum of the angular displace-
ment from the dipole from 25 simulations. The spectrum has a high-

Ž . �2frequency region S f � f which slowly flattens out to a flat spectrum at
low frequencies. This is nearly consistent with the spectra of inclination
and declination from lake sediment time series shown in Figs. 48 and 49.
The measured value of the crossover from white-noise to Brownian-motion
behavior in the lake sediment power spectra is 3 kyr. This value is
consistent with estimates of 103 to 104 years for the diffusion time across

Ž . Ž .the core from Harrison and Huang 1990 and McLeod 1996 . A major
discrepancy between the model and the observed spectrum is the absence
of a flattening out of the spectrum of angular displacement at high
frequencies in the model calculation.

5. OTHER APPLICATIONS

Self-affine time series occur in many other areas of earth science. For
Ž .example, topographic profiles are Brownian motions Turcotte, 1987 .

Ž .Pelletier 1999c has shown that a model of topography governed by the
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FIG. 53. Average power spectrum of the angular deviation from a dipole field from 25
Ž . �2simulations. The spectrum is S f � f for high frequencies and gradually flattens out to a

constant spectrum at low frequencies.

diffusion equation with the diffusivity a function of discharge predicts both
the Brownian motion variations and the log-normal distribution of topog-
raphy. Branching river networks with statistics identical to those of real
river networks were also obtained. Gravity fields also exhibit power-law

Ž .power spectra Turcotte, 1987; Passier and Sneider, 1995 . These power
spectra have been interpreted as resulting from random density anomalies

Ž .in the mantle Lambeck, 1976 . A related problem to the fractal structure
of topography which may also exhibit self-affinity is sediment loads in

Ž .rivers. Plotnick and Prestegaard 1993 have obtained time-series data for
sediment loads in rivers on time scales of minutes to days. They applied
both the rescaled-range technique and power-spectral analysis to show
that the time series are approximately self-affine.

Ž .Tjemkes and Visser 1994 have performed power-spectral analyses on
the horizontal variability of temperature, humidity, and cloud water in the
atmosphere. They found that different power-law behaviors were applica-
ble over well-defined wave number ranges. These results are important for
understanding the variability of the atmosphere and for improved charac-
terization of these fields for inputs into large-scale models of the climate

Ž .system IPCC, 1995 . The TOPEX�POSEIDON project has provided data
on sea-surface height with global coverage with a 10-day sampling interval.

Ž .Wunsch and Stammer 1995 have shown that sea-surface height has
self-affine behavior in both space and time with three different values of �
characterizing the variability over different wave number ranges. Variabil-
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ity in sea-surface height has been modeled using the potential vorticity
equation with stochastic forcing to represent variable wind conditions
Ž .Muller, 1996 . These techniques are very similar to the stochastic partial
differential equations discussed in this article, Sections 2�4. Hsui et al.
Ž .1993 have shown that sea-level variations are a self-affine time series on
time scales of 104 to 108 yr. Since sea-level variations determine the major
unconformities of the stratigraphic record, the record of the earth’s history
is determined by self-affine behavior.

Self-affine time series have applications in other fields. It has long been
recognized that spatial variations in plankton abundance in the oceans are
self-affine. This has been determined by performing power-spectral analy-
sis on remotely sensed data for plankton along one-dimensional transects
Ž .Platt and Denman, 1975 . Plankton variability has been modeled using
stochastic diffusion equations similar to those presented in this paper
Ž .Fasham, 1978 . Diffusion is used to model ocean mixing and stochastic
terms are introduced to model the effects of local environmental variations
that affect the population growth rate, such as variations in light intensity
and nutrient concentration. Power-spectral analyses have also been per-

Ž .formed on vegetation densities Palmer, 1988 . The time series were
Ž .observed to have power-law power spectra. Sugihara and May 1990 and

Ž .McKinney and Frederick 1992 have applied the self-affinity of population
abundance in time to assessments of the probability of extinction. They
argued that populations with stronger correlations in variability, character-
ized by larger values of � or Hu, have greater fluctuations in population
size and have a higher probability of extinction.

Self-affine time series with � 
 1 are also observed in traffic flows
Ž .Musha and Higuchi, 1976 . This behavior is reproduced in lattice gas
models which move cars around on a lattice according to simple interac-
tion rules that prevent cars from occupying the same space and that are

Ždriven by a random input of cars into the lattice Takayasu and Takayasu,
.1993 . 1�f noise has also been observed in the density of Internet traffic.

This observation may have important implications for the design and
testing of network software and services.

6. CONCLUSIONS

We have considered a variety of time series in this paper. As is the case
for many other data sets, time series include both deterministic and
stochastic components. We have concentrated our attention on the
stochastic components. Our principal objective has been to show that
the stochastic component of time series associated with complex phenom-
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ena can have considerable order and, in particular, exhibit self-affine
behavior. In order to do this we have considered three examples in some
detail.

The first example we have considered is the natural variability of
climate. On short time scales, atmospheric temperature observations ex-
hibit deterministic daily and yearly periodicities. These have been removed
from our considerations. On long time scales, periodicities of 100, 41, 23,
and 19 kyr are observed. These four periodicities are Milankovitch cycles
and are associated with tilt and precession. Again, we do not consider
these in detail because the focus of our attention is on the stochastic

Ž .variability. At frequencies below about 1� 40 kyr , the noise spectrum is
Ž .flat white . Radiative transfer from the atmosphere is balanced against

Ž . Ž .the solar input. At frequencies between about 1� 40 kyr and 1� 2 kyr ,
Ž .the global temperature drifts and is a Brownian motion � � 2 . The

oceans and atmosphere act as a single thermal bath which is not buffered
Ž .by radiative losses to infinity. At frequencies between about 1� 2 kyr and

Ž .1� 1 month , the atmospheric temperature is stationary and is well approx-
imated by a self-affine behavior with � � 0.5. In this frequency range, the
atmospheric temperature is buffered by heat exchange with the oceans,
which act as a near-isothermal bath. At frequencies between about

Ž . Ž .1� 1 month and 1� 1 day , the temperatures at continental stations again
drift, and are well approximated by a nonstationary self-affine behavior
with � � 1.5, whereas maritime stations remain proportional to � � 0.5.
The maritime stations are buffered by the oceanic heat sink, whereas the
continental stations are not.

It is also shown that river-discharge and tree-ring time series exhibit
stationary � � 0.5 spectra. This is consistent with a Hurst exponent
Hu 
 0.7. This weakly persistent behavior was found to be widely applica-

Ž .ble to natural time series by Hurst et al. 1965 .
These studies of the stochastic variability of climate are important in a

variety of ways. They provide an important test of the validity of global
Ž . Ž .circulation models GCMs . Manabe and Stouffer 1996 have carried out

a spectral study of their GCM, and the agreement with the results given
here is rather poor. Also, the fact that global temperature obeys a � 
 0.5

Ž . Ž .spectral behavior in the frequency range 1� 100 yr to 1� 10 yr can be
used to compare the natural variability of climate to fluctuations that are
attributed to global warming. Monte Carlo simulations with time series
exhibiting a � � 0.5 behavior can be used to obtain the probability that
a specific change in global temperature can be attributed to natural
variability.

We have also shown that variations in solar luminosity exhibit the same
transitions as the climate data: from � 
 0 to � 
 2 to � 
 0.5. Thus the



SELF-AFFINE TIME SERIES: II 159

physics of the radiating layer of the sun must strongly resemble the physics
of the Earth.

The second major example we considered is the variability of porosity in
sedimentary basins. It is shown that the horizontal variations are well

Ž .approximated by a Brownian motion � � 2 and the vertical variations by
a fractional Brownian motion with � � 1.5. In order to explain these
results we introduced the stochastic diffusion model. This model combines

Ž .a white-noise deposition with the horizontal diffusion Culling model
for material transport. This model reproduces the observed self-affine
behavior.

We have also applied the stochastic diffusion model in order to explain
the completeness of the sedimentary record. According to this model, the

Ž .mean rate of deposition over a period T , R T , depends on T according to
R � T�3�4. The observed dependence is R � T�0.76.

The third example we considered is the temporal variability of the
Earth’s magnetic field. By combining a variety of paleointensity measure-
ments, we are able to obtain the power spectrum of the dipole moment of

Ž . Ž .the field over the frequency range 1� 4 Myr to 1� 100 yr . Over this
Ž .entire range, the power spectrum is well approximated by a 1�f � � 1

self-affine time series.
As a further test of this result we considered the field’s reversal record.

We produce synthetic 1�f time series with the observed mean and vari-
ance of the Earth’s magnetic field. Each time a synthetic field reaches zero
field intensity, we assume that the polarity of the field is changed. We then
compare the number�length statistics of the synthetic fields with the
observed statistics. Good agreement is found.

Even though the dynamo driving the Earth’s magnetic field is extremely
complex, the statistical behavior of the resulting magnetic-field time series
is quite simple. This simplicity must be one of the primary tests for the
validity of new dynamo theories.

An important question that we have addressed in each of our applica-
tions is the cause of the observed self-affine behavior. We have shown that
a variety of self-affine signals can result from transport phenomena in
which there is a random element and a diffusion element. Which value of
� that results, and over what frequency or wave number domain, depends
on the dimensionality of the phenomena, the boundary conditions, and

Žhow the random element enters into the equation whether as a noise in
.the mass or energy or in the flux of mass or energy . We have included

other examples of self-affine phenomena in this section to stimulate
researchers in those fields to apply techniques in this paper to their
problems, if appropriate. If a differential equation could be developed to
model self-affine behavior in other phenomena, researchers might come to
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better understand the relative role of deterministic versus stochastic pro-
cesses in those problems and have a null model against which to test for
the presence of external forcings on the system or other phenomena.
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Abbreviations and symbols, 83�87
Aliasing, 22
Antipersistence, see Persistence and antiper-

sistence
Atmosphere�ocean model, 102�113, 158
Atmosphere�ocean�land surface model,

112�113
Atmospheric temperature, 91�98, 100, 156
Autocorrelation function

applied to
geomagnetic fields, 150, 152
synthetic time series, 9

autocovariance function, 6�7, 9, 50
continuous, 6
discrete, 7
Fourier analysis, see Fourier analysis
persistence and antipersistence, 6�7
relation to

power-spectral density, 7, 27
semivariograms, 8�9
variance of time series, 27�28

Weiner�Khinchine theorem, 152
white noise, 7

Autocovariance function, 6�7, 9, 50
Ž .Autoregressive AR model, 6, 115

Average extreme-value analysis
applied to

Gaussian noises and motions, 66�69
log-normal noises and motions, 69�71

description, 64�66
rescaled-range, compared to, 67�68, 71
summary of strengths and weaknesses, 82

B

Bed thickness distributions, 131, 136�139
Blackbody radiation, 93, 107
Brownian motions

analyses using
average extreme-value analysis, 67�68

power-spectral analysis, 23�25, 40
rescaled-range analysis, 62�63
semivariogram analysis, 49�50
wavelet variance analysis, 73�74, 76�77

construction
Fourier filtering technique, 35�37
successive random additions, 43�47
white noise, running sum, 14�15

examples in nature
geomagnetic variations, 148�150,

152�156
sediment deposition, 132�136
temperature, 93�94, 98
topography, 4, 11, 121, 126, 129�130,

155�156
examples of synthetic, 12, 14�15, 17, 25,

29, 38, 46, 48, 74, 120
fractional, see Fractional Gaussian noises

and motions; Fractional log-normal
noises and motions

rescaling, 28�30
standard deviation, 14�15
successive random additions, 43�47
variance, 14�15
white noise, relation to, 14�15, 23�26

C

Cantor set, 133�134
Climate variability

atmosphere�ocean model, 102�113, 158
deuterium, Vostok ice core, 91, 93�94, 98,

109�110
droughts, 53, 59, 115�117
Milankovitch cycles, 158
precipitation, 99�100
river discharge, 4�5, 59, 98�100, 115�117,

158
solar luminosity, 114, 158�159
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Ž .Climate variability continued
stochastic diffusion model

one-dimensional, 100�107
two-layer, 107�114

summary, 158�159
temperature, 91�98, 100, 156
tree-ring widths, 98�100, 158

Clouds, 130
Coastlines, 1, 10�11, 130
Coefficient of variation, 51�53
Colorado river, 116�117
Complex numbers, 21�22
Composite long-memory processes, 79
Conservation of energy, 102
Continuous time series, 2�5
Convolution, 73
Correlation, pair, see Pair correlation
Correlations in time series, see Persistence

and antipersistence
Correlogram, 7, see also Semivariogram

analysis
Cretaceous superchron, 146�147
Cryptochrons, 143
Culling model, 159

D

Delta function, 52
Density, power-spectral, see Power-spectral

density
Denver basin hydrocarbons, 126�129
Deposition, see Sediments
Deterministic self-affine fractal, 11�12
Detrending, 34�35, 95
Deuterium, Vostok ice core, 91, 93�94, 98,

109�110
Deviation, standard, see Variance
Devil’s staircase, 134
Differencing self-affine time series, 14�15,

25�27, 37�39, 61
Diffusion equation, 100, 102, 106, 123
Dimensions, see Euclidean dimensions; Ex-

treme-value exponent, He; Fractal di-
mension, D; Hausdorff exponent, Ha;
Hurst exponent, Hu; Power-spectral
density exponent, � ; Wavelet variance
exponent, Hw

Dipole moment variability, 140�142, 153�155
Discharge, river, 4�5, 59, 98�100, 115�117,

158

Discontinuous sedimentation, 134, 137
Discontinuous time series, 2�5
Discrete Fourier transform, 21�22, see also

Fourier analysis
Discrete time series, 2�5
Dispersional analysis, 79
Distributions

bed-thickness, 131, 137�139
binormal, magnetic field as, 154
exponential, 131, 138�139, 142
families of, 3, 5
fractal, 10, 91
frequency�size, 10, 51, 91, 130, 137�139,

143, 146
Gaussian, see Gaussian distributions
log-normal, see Log-normal distributions
normal, see Gaussian distributions
power-law, 10, 91

Droughts, 53, 59, 115�117

E

Earth’s geodynamo, see Geomagnetic field
Earth’s magnetic field, see Geomagnetic field
Earthquakes, 4�5, 128
Elevation, see Topography
Erosion, see Sediments
Euclidean dimensions, 13
Exponents, see Extreme-value exponent, He;

Hausdorff exponent, Ha; Hurst expo-
nent, Hu; Power-spectral density expo-
nent, � ; Wavelet variance exponent, Hw

Extended fractional Gaussian noises and
motions, 39�40, see also Fractional
Gaussian noises and motions

Extreme-value exponent, He
see also Average extreme-value analysis
defined, 66
dependence on � for

Gaussian noises and motions, 66�68
log-normal noises and motions, 70�71

relation to Hu, 67�68

F

Fading, see Windowing
Floods, 53, 59
Fluvial sedimentation rates, 135, 156
Fourier analysis

aliasing, 22
coefficients, 21�22, 35�37
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coefficients after windowing, 34
description, 19�22
discrete Fourier transform, 21�22
filtering technique, 35�37
inverse Fourier transform, 20�21
leakage, 32�34, see also Windowing
nonperiodic continuous time series, 20�21
nonperiodic discrete time series, 21�22
Parseval’s theorem, 27�28
periodic continuous time series, 19�20
prewhitening, 33
problems using, 32�35, 71
spectral variance, 32�33
spectrum, 20, see also Power-spectral anal-

ysis
units of, 21
transform, 19�22
Weiner�Khinchine theorem, 152
windowing, see Windowing

Fourier’s law of heat transport, 102
Fractals

see also Fractal dimension, D; Self-affine
fractals, Self-similar fractals

Cantor set, 133�134
devil’s staircase, 134
statistical concept, 1, 10

Fractal dimension, D
definition, 10
derivation of relation between

D and � , 28�30
D and Ha, 16�18

methods for deriving
box-counting method, 10�11, 13,

126�127
ruler method, 30

time series, 18
Fractional autoregressive integrated moving

Ž .average FARIMA model, 79
Fractional Brownian motions, see Fractional

Gaussian noises and motions
Fractional Gaussian noises and motions

analyses using
average extreme-value analysis, 66�69
power-spectral analysis, 35�37, 44�45
rescaled-range analysis, 62�64
semivariogram analysis, 47, 49�51
wavelet variance analysis, 72�77

construction
Fourier filtering technique, 35�37
successive random additions, 43�47

summing and differencing, 25�27
Weierstrass�Mandelbrot functions, 47

examples in nature
geomagnetic field variations, 141, 149,

154
porosity variations, 124
temperature, 93�98

examples of synthetic, 37�39, 41, 43, 47�48,
74, 120, 144

Fourier filtering technique, 35�37
persistence, see Persistence and antiper-

sistence
successive random additions, 40�47
symbols used in analyses, 40
two-dimensional, 129

Fractional log-normal noises and motions
analyses using

average extreme-value analysis, 69�71
power-spectral analysis, 55�56
rescaled-range analysis, 64�65
semivariogram analysis, 9, 56�58
wavelet variance analysis, 75, 77�78,

80�81
conversion from fractional Gaussian noises

and motions, 53
discussion, 51�56
drought analysis, 115
examples of synthetic and in nature, 4, 54,

78, 101�102
Joseph and Noah effect, 53
persistence, see Persistence and antiper-

sistence
symbols used in analyses, 55

Frequency domain, 19�20, 37�39
Frequency�size distributions, 10, 51, 91, 130,

137�139, 143, 146

G

Gaussian distributions
binormal distribution, magnetic field, 154
earthquakes, 4�5
fractional noises and motions, see Frac-

tional Gaussian noises and motions
random, see White noise
relation to log-normal distributions, 51, 53,

55
stochastic diffusion model results as, 112,

126
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Ž .Gaussian distributions continued
successive random additions, 43�46
temperature fluctuations as, 112
topographic elevations, 127

GCM, see General circulation models
Geodynamo, Earth’s, see Geomagnetic field
General circulation models, 93, 112�113, 158
Geomagnetic field

archeomagnetic data, 140�142
cryptochrons, 143
declination data, 148�151
dipole moment variability, 140�142
geomagnetic variations model, 152�155
global paleomagnetic database, 148�150
inclination data, 148�151
marine sediment data, 140�142
polarity reversals, 142�148
Rikitake disk dynamo, 144
summary, 159

Global paleomagnetic database, 148�150
Gravity fields, 156
Green’s function, 107�108
Groundwater migration, 118
Gulf of Mexico, well logs, 124�126

H

Hadley circulation, 105, 110
Hann window, 34
Harr wavelet, 72
Hausdorff exponent, Ha

see also Semivariogram analysis
box counting, 11, 16�18
dependence on � for

Gaussian noises and motions, 49�50
log-normal noises and motions, 57�58

derivation of relation between
Ha and � , 28�30
Ha and D, 16�18

Gaussian surfaces, 130
sedimentation rates, related to, 136
self-affine fractal definition, 11
self-affine time series definition, 14, 18
successive random additions, 45�47
variance, relation to, 14

Heat diffusion, metallic film, 92�93, 103�105
Heat transport, Fourier’s law, 102
Heavyside function, 123

Hiatuses, sedimentary, 131, 133, 137
Hurst exponent, Hu

see also Rescaled-range analysis
defined, 60�61
dependence on � for

Gaussian noises and motions, 63�64
log-normal noises and motions, 64, 66

relation to Ha, 61
relation to He, 67�68

Hurst, Harold, 58�60, 100
Hydrocarbons, 126�130
Hydro-Climatic Data Network, 98�99
Hydrology

Colorado river, 116�117
droughts, 53, 59, 115�117
fluvial sedimentation rates, 135, 156
groundwater migration, 118
Hurst, Harold, 58�60, 100
Joseph and Noah effect, 53
Nile river, 59
precipitation, 99�100
rescaled-range analysis, 58�61
river discharges, 4�5, 59, 98�100, 115�117,

158
sediment loads in rivers, 135, 156
short-range persistence models, 6, 115
tree-ring widths, 99�100, 158

I

Ice cores, 91, 93�94, 98, 109�110
Invariance, scale, 1, 10
Inverse Fourier transform, 20�21, see also

Fourier analysis

J

Joseph effect, 53

L

Leakage, 33, see also Windowing
Lloydminster oil field, 130
Log-normal distributions

coefficient of variation, 51�53
discussion, 51�56
drought analysis, 115
examples of, 4�5, 52�54, 101�102
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fractional noises and motions, see Frac-
tional log-normal noises and motions

relation to Gaussian distributions, 51, 53,
55

Log-normal noises and motions, see Frac-
tional log-normal noises and motions

Lomb periodogram, 93
Long memory, see Persistence and antiper-

sistence
Long-range correlations, see Persistence and

antipersistence
Lorentzian spectrum, 109, 111, 152

M

Magnetic field, see Geomagnetic field
Mandelbrot, Benoit, 1, 35
Maximum likelihood estimators, 79
McLeod�Hipel Time Series Datsets Collec-

tion, 60
Memory, see Persistence and antipersistence
Metallic film heat diffusion, 92�93, 103�105
Mexican hat wavelet, 72�73
Milankovitch cycles, 158
Models

atmosphere�ocean, 102�113
atmosphere�ocean�land surface, 112�113

Ž .autoregressive AR , 6, 115
Culling, 159
fractional autoregressive integrated mov-

Ž .ing average FARIMA , 79
general circulation, 93, 112�113, 158
geomagnetic, 153�155
long-range persistence, see Average ex-

treme-event analysis; Dispersional
analysis; Maximum likelihood estima-
tors; Power-spectral analysis;
Rescaled-range analysis;
Roughness�length method; Semivari-
ogram analysis; Wavelet variance
analysis

Ž .moving-average MA , 6
random-walk, 122�124, 131�132
Sadler and Strauss, 131, 135
sedimentary bed formation, 131
stochastic diffusion, see Stochastic diffu-

sion models
stratigraphic, Plotnick, 131, 133, 137

Modulus, complex number, 22

Mother wavelet, 71�72
Motions, see Brownian motions; Fractional

log-normal noises and motions
Ž .Moving�average MA model, 6

N

Nile river, 59
Noah effect, 53
Noises, see Brownian motions; Fractional

Gaussian noises and motions; Fractional
log-normal noises and motions; White
noise; Persistence and antipersistence

Nonperiodic time series, 20�22
Nonstationary, see Stationary
Normal distribution, see Gaussian distribu-

tions

O

Ocean, models with atmosphere, 102�113
Oil wells, 126�130

P

Pair-correlation technique
applied to

earthquakes, 128
geomagnetic reversals, 147�148
hydrocarbons, 127�129
synthetic hydrocarbon reservoirs,

129�130
description, 127�128, 147

Paleointensity, see Geomagnetic field
Paleomagnetism, see Geomagnetic field
Parseval’s theorem, 27�28
Periodicity, tests for, 151
Periodogram, see Power-spectral analysis;

Power-spectral density
Persistence and antipersistence

description, 1�2, 5�6, 38�39
fractional noises and motions, see Frac-

tional Gaussian noises and motions;
Fractional log-normal noises and mo-
tions

long-range, 5�6, 39, 79, see also Autocor-
relation function; Average extreme-
value analysis; Power-spectral
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Ž .Persistance and antipersistence continued
analysis; Rescaled-range analysis;
Semivariogram analysis; Wavelet vari-
ance analysis

measures of, see Exponents
short-range, 5�6, 39, 115, see also Auto-

correlation function
stationarity, related to, 31�32
strength, 5�7, 19, 31�32, 39, see also Ex-

ponents
uncorrelated time series, see White noise
weak vs strong, 5�7, 31�32, 39

Petroleum, spatial distribution of, 126�130
Plankton studies, 157
Poisson process, 147
Polarity, magnetic field, see Geomagnetic

field
Porosity in sedimentary basins, 92, 118,

124�130, 159
Powder River basin hydrocarbons, 126�129
Power-law distributions, 10, 91
Power-law regimes, 91
Power-spectral analysis

see also Power-spectral density; Power-
spectral density exponent, �

applied to
atmospheric temperature, 93�98, 156
Brownian motion, 23, 25
declination data, 148�150
deuterium, Vostok ice core, 93�94, 98
dipole moment variations, 140�142
Gaussian noises and motions, 35�37,

40�45
geomagnetic field, 140�142, 148�151
geomagnetic model results, 153�155
gravity fields, 156
inclination data, 148�150
log-normal noises and motions, 55�56
plankton variability, 157
porosity variations, 118, 124�127
river discharges, 98�100
sea-surface heights, 156�157
sediment loads in rivers, 156
sedimentation rates, 136
solar luminosity, 114
stochastic diffusion model results,

100�113, 120�122
temperature variability, 93�98, 156
topography, 118, 124, 126
tree-ring widths, 98�100
vegetation densities, 157

Vostok ice core, 93�94, 98
well logs, 118, 124�127
white noise, 23�24, 35�37
windowed time series, 39�44

binning data, 23
description, 19�26
Lomb periodogram, 93
overview of applications, 91�92
summary of strengths and weaknesses, 82
windowing, see Windowing

Power-spectral density
see also Power-spectral analysis; Power-

spectral density exponent, �
continuous, 22
description, 22�28
discrete, 23
relation to

autocorrelation function, 27
variance, 27�28

units of, 22
windowing effects, 34, 39�44

Power-spectral density exponent, �
see also Power-spectral analysis; Power-

spectral density
definition, 22
derivation of relation between � , Ha and

D, 28�30
differenced time series, 25�27, 37�39
Fourier filtering technique, 35�37
fractional Gaussian noises and motions,

dependence on � for: � , 40, 45;PS
Ha, 49�50; He, 66�68; Hu, 63�64;
Hw, 75, 77

fractional log-normal noises and motions,
dependence on � for: � , 55�56;PS
Ha, 57�58; He, 70�71; Hu, 64�66;
Hw, 75, 81

summed time series, 25�27, 37�39
weak vs strong persistence, cross-over,

31�32
Power-spectral filtering, 35�37
Precipitation, 99�100
Prewhitening, 33

R

Radiation, blackbody, 93, 107
Radiative damping, 111�112
Random additions, successive, 43�47
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Random-walk model, 122�124, 131�132
Rescaled-range analysis

applied to
climatological time series, 100, 115, 158
Gaussian noises and motions, 62�64
log-normal noises and motions, 63�64
sediment loads in rivers, 156

average extreme-value analysis, compared
to, 67�68, 71

continuous, 59�60
description, 58�61
discontinuous, 60�61
Hurst, Harold, 58�60, 100
running sum, and, 61
summary of strengths and weaknesses, 82

Reservoir storage, 59
Reversals, magnetic field, see Geomagnetic

field
Rikitake disk dynamo, 144
River discharges, 4�5, 59, 98�100, 115�117,

158
Roughness�length method, 79
Ruler method, 30
Running sum, 14�15, 25�27, 37�39, 61

S

Scale invariance, 1, 10
Sea-surface heights, 156�157
Sedimentary basins, porosity variations in,

92, 118, 124�130, 159
Sedimentation, see Sediments
Sediments

bed thickness distributions, 131, 136�139
completeness, stratigraphic, 131�136
deposition, 122�124, 131�139
erosion, 122�124, 131�139
hiatuses, 131, 133, 137
models for sedimentation and porosity

Culling, 159
overview, 118
random-walk, 122�124, 131�132
Sadler and Strauss, 131, 135
stochastic diffusion, 118�124
stratigraphic model of Plotnick, 131, 133,

137
porosity observations, 124�130
sedimentation, 117�139, 159

sedimentation variations, overview,
117�118

SEDPAK, 136
summary, 159
unconformities, 133�135, see also Hia-

tuses
Self affine, definition, 1
Self-affine fractals

box-counting method for, 11, 13
concept, 10�13
construction, deterministic, 11�12
definition, 11, 22
deterministic, 11�12
dimensions, 11, 13, 22, see also Exponents
self-affine time series, relation to, 16�18
standard deviation, 16�18
statistical, 11�13
topography as, 11�12

Self-affine time series
box-counting method for, 16�18
definition, 1
deriving relation between

� , Ha and D, 28�30
Ha and D, 16�18

differencing, effect on � , 25�27
first derivative, 26�27
power-law regimes, 91
rescaling, 28�30
self-affine fractals, relation to 16�18
standard deviation, 16�18
summing, effect on � , 25�27, 37�39

Self-similar fractals
extension to time series, 16�18
fractal dimension, D, 10
statistical, 1, 10�11

Semivariogram analysis
applied to

Gaussian noises and motions, 9, 47,
49�51

log-normal noises and motions, 9, 56�58
autocorrelation function, relation to, 8�9
continuous, 8�9, 18
discrete, 8�9, 18
discussion, 8�9, 18�19, 50�51
summary of strengths and weaknesses, 82
variograms, 8

Shading, see Windowing
Short memory, 5�6, 39, 115, see also Persis-

tence and antipersistence
Solar luminosity, 114, 158�159
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Spectral analysis, see Autocorrelation func-
tion; Fourier analysis; Power-spectral
analysis

Spectral filtering, 35�37
Spectral variance, 32�33
Staircase, devil’s, 134
Standard deviation, see Variance
Stationarity

description, 8, 13�14, 50�51, 112, 151
persistence strength, relation to, 31�32
weak, 8

Stefan�Boltzmann law, 107
Stochastic component of time series, 1, 3
Stochastic diffusion model

for climate variability
one-dimensional, 100�107
two-layer, 107�114

for sedimentation and porosity, 118�124,
159

other studies using, 157
Storage, reservoir, 59
Stratigraphic completeness, 131�136
Stratigraphy, see Sediments
Streamflow, 4�5, 59, 98�100, 115�117, 158
Strong persistence, 5�7, 31�32, see also Per-

sistence and antipersistence
Successive random additions, 43�47
Summing self-affine time series, 14�15,

25�27, 37�39, 61
Superchron, Cretaceous, 146
Symbols

appendix, 83�87
Gaussian noise and motion analyses, 40
log-normal noise and motion analyses, 55

Synthetic time series
see also Fractional Gaussian noises and

motions; Fractional log-normal noises
and motions

construction
Fourier filtering, 35�37
running sum, 14�15, 25�27, 37�39
successive random additions, 43�47
Weierstrass�Mandelbrot functions, 47

T

Tapering, see Windowing
Temperature, atmospheric, 91�98, 100, 156

Time series
antipersistence, see Persistence and an-

tipersistence
average, 6�7
binning data, 23
characterization of, 3, 5�6
component

periodic, 3, 20, 95�96, 151
stochastic, 1, 3
trend, 3, 34�35, 95

continuous, 2�5
correlations in, see Persistence and an-

tipersistence
definition, 2�3
detrending, 34�35, 95
discontinuous, 2�5
discrete, 2�5
distributions, families of, 3, 5, see also Dis-

tributions
lag, 6�7
mean, 6�7
moments, 8
periodicity, tests for, 151
persistence, see Persistence and antiper-

sistence
quantification, 3�6
running sum, 14�15, 25�27, 37�39, 61
standard deviation, 14
stationarity, 8, see also Stationarity
synthetic, see Synthetic time series
trend, 34�35, 95
variance, 6�8, 14

TOPEX�POSEIDON, 156�157
Topography

examples, 3�5, 11, 121, 126�127, 155�156
random-walk model, 122�124
stochastic diffusion model, 118�124

Traffic flow, 157
Transforms

Fourier, 19�21
wavelet, 71�79

Tree-ring widths, 98�100
Trend, 34�35, 95

U

Unconformities, 133�135, see also Hiatuses
Uncorrelated time series, 4�5, 7, see also

White noise
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V

Variables, appendix, 83�87
Variance

Brownian motion, 14
coefficient of variation, 51�53
relation to

autocovariance function, 6�7
persistence strength, 31�32
power-spectral density, 27�28
self-affine time series, 14, 18
semivariograms, 8, 50�51

rescaled-range, standard deviation, 60
stationarity, see Stationarity
wavelets, see Wavelet variance analysis

Variograms, 8, see also Semivariogram
analysis

Vegetation densities, 157
Vostok ice core, 91, 93�94, 98, 109�110

W

Walker circulation, 105, 110
Wavelet variance analysis

applied to
Gaussian noises and motions, 72�77
log-normal noises and motions, 75,

77�78, 80�81
description, 71�73
Mexican hat, 72�73
summary of strengths and weaknesses,

82�83
transform examples, 74�75, 78�79

Wavelet variance exponent, Hw
see also Wavelet variance analysis
defined, 75
dependence on � for

Gaussian noises and motions, 75, 77, 81
log-normal noises and motions, 70

Weak persistence, 5�7, 31�32, see also Per-
sistence and antipersistence

Weak stationarity, 8
Weierstrass�Mandelbrot functions, 47
Weighting, see Windowing
Weiner�Khinchine theorem, 152
Welch window, 34
Well logs, 118, 124�126
Wells, oil, 126�130
White noise

analyses using
average extreme-value analysis, 67�68
Fourier analysis, 20
power-spectral analysis, 23�25, 35�36
rescaled-range analysis, 62�63
semivariogram analysis, 49�50
wavelet variance analysis, 73�74, 76�77

Brownian motion, relation to, 14�15
description, 13�14
examples in nature

earthquakes, number per month, 4�5
geomagnetic variations, 148�150
temperature, 93�94, 98

examples of synthetic, 14, 37�38, 47�48,
74

Fourier filtering technique, 35�37
geomagnetic field modeling, 152�153
running sum, 14�15, 37�38
standard deviation, 14
successive random additions, 43�47
variance, 14

Wilson cycle, 136
Windowing

description, 33�34
effects, 39�44
Hann window, 34
Welch window, 34, 39�41, 43



This  Page  Intentionally  Left  Blank


	Advances in Geophysics: Long-Range Persistence in Geophysical Time Series
	Contents
	Contributors
	Preface
	Part I: Self-Affine Time Series: I. Generation and Analyses
	Chapter 1. Introduction
	1.1 Brief Overview of Article
	1.2 What Is a Time Series?
	1.3 How Is a Time Series Quantified?
	1.4 Autocorrelations and Semivariograms
	1.5 Self-Affine Fractals
	1.6 Gaussian White Noises and Brownian Motions

	Chapter 2. Spectral Analysis
	2.1 The Fourier Transform
	2.2 The Power-Spectral Density
	2.3 The Relation of &#946;, Ha, and D
	2.4 Weak vs Strong Persistence
	2.5 Spectral Variance and Leakage

	Chapter 3. Synthetic Fractional Noises and Motions
	3.1 What Are They?
	3.2 Spectral Analysis
	3.3 Method of Successive Random Additions
	3.4 Semivariograms

	Chapter 4. Log-Normal Noises and Motions
	4.1 Log-Normal Distributions
	4.2 Fractional Log-Normal Noises and Motions
	4.3 Spectral Analysis
	4.4 Semivariograms

	Chapter 5. Rescaled-Range (R/S) Analysis
	5.1 The Method
	5.2 Applications to Fractional Gaussian Noises and Motions
	5.3 Applications to Fractional Log-Normal Noises and Motions

	Chapter 6. Average Extreme-Value Analysis
	6.1 The Method
	6.2 Applications to Fractional Gaussian Noises and Motions
	6.3 Applications to Fractional Log-Normal Noises and Motions

	Chapter 7. Wavelet Analysis
	7.1 The Method
	7.2 Applications to Fractional Gaussian Noises and Motions
	7.3 Applications to Fractional Log-Normal Noises and Motions

	Chapter 8. Summary
	Acknowledgments
	Appendix
	References


	Part II: Self-Affine Time Series: II. Applications and Models
	Chapter 1. Introduction
	Chapter 2. Natural Variability of Climate
	2.1 Temperature Spectra
	2.2 River-Discharge and Tree-Ring Spectra
	2.3 Stochastic Diffusion Model
	2.4 Variations in Solar Luminosity
	2.5 Drought Hazard Assessment

	Chapter 3. Variations in Sedimentation
	3.1 Introduction
	3.2 Stochastic Diffusion Model
	3.3 Observations
	3.4 Completeness of the Sedimentary Record
	3.5 Bed Thicknesses

	Chapter 4. Variability of the Earth’s Magnetic Field
	4.1 Variations of the Dipole Moment
	4.2 Reversal Record
	4.3 Inclination and Declination Data
	4.4 Model for Geomagnetic Variations

	Chapter 5. Other Applications
	Chapter 6. Conclusions
	Acknowledgments
	References


	Index

